Меню Рубрики

Факторы препятствующие и способствующие процессу фильтрации мочи

Выделительная функция почек. Механизм клубочковой фильтрации, факторы, влияющие на уровень эффективного фильтрационного давления. Сравнительный состав плазмы крови, первичной и вторичной мочи.

Выделение – часть обмена веществ, осуществляемая путем выведения из организма конечных и промежуточных продуктов метаболизма, чужеродных и излишних веществ для обеспечения оптимального состава внутренней среды и нормальной жизнедеятельности. Процессы выделения являются неотъемлемым признаком жизни, поэтому их нарушение неизбежно приводит к нарушениям гомеостазиса, обмена веществ и функций организма, вплоть до его гибели. Выделение неразрывно связано с обменом воды, поскольку основная часть предназначенных для выведения из организма веществ выделяется растворенными в воде. Основным органом выделения являются почки, образующие и выделяющие мочу и вместе с ней подлежащие удалению из организма вещества. Почки являются также основным органом обеспечения вводно-солевого обмена.

В паренхиме почек выделяется корковое и мозговое вещество. Структурной единицей почек является нефрон. В каждой почке около миллиона нефронов. Каждый нефрон состоит из сосудистого клубочка, находящегося в капсуле Шумлянского-Боумена, и почечного канальца. К капиллярам клубочка подходит приносящая артериола, а от него отходит выносящая. Диаметр приносящей больше, чем выносящей. Клубочки, расположенные в корковом слое относятся к корковым, а в глубине почек – юкстамедуллярными. От капсулы Шумлянского-Боумена отходит проксимальный извитой каналец, переходящий в петлю Генле. В свою очередь она переходит в дистальный извитой мочевой каналец, который открывается в собирательную трубочку. Образование мочи происходит с помощью нескольких механизмов: Клубочковой и Канальцевой фильтрации.

Почки удаляют из организма избыток воды, неорганических и органических веществ, продукты азотистого обмена и чужеродные вещества; мочевину, мочевую кислоту, креатинин, аммиак, лекарственные препараты.

Клубочховая фильтрация Фильтрация воды и низкомолекулярных компонентов из плазмы крови в полость капсулы происходит через клубочковый,или гломерулярный, фильтр. Гломерулярный фильтр имеет 3слоя; эидотелиальные клетки капилляров, базальную мембрану и эпителий висцерального листка капсулы, или подоциты. Эндотелий капилляров имеет поры диаметром 50 -100 нм, что ограничивает прохождение форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов). Основным барьером для фильтрации является базальная мембрана. Поры в базальной мембране составляют 3 — 7,5 нм. Эти поры изнутри содержат отрицательно заряженные молекулы (анионные локусы), что препятствует проникновению отрицательно заряженных частиц, в том числе белков. Третий слой фильтра образован отростками подоцитов, между которыми имеются щелевые диафрагмы, которые ограничивают прохождение альбуминов и других молекул с большой молекулярной массой. Эта часть фильтра также несет отрицательный заряд. Легко фильтроваться могут вещества с молекулярной массой не более 5500, абсолютным пределом для прохождения частиц через фильтр в норме является молекулярная масса 80 000. Таким образом состав первичной мочу обусловлен свойствами гломерулярного фильтра. В норме вместе с водой фильтруются все низкомолекулярные вещества, за исключением большей части белков и форменных элементов крови. В остальном состав ультрафильтрата близок к плазме крови. При нефропатиях, нефритах поры теряют отрицательный заряд, что приводит к прохождению через них многих белков. Такие вещества, как гепарин, способствуют восстановлению анионных локусов, а антибиотики, наоборот, уменьшают их наличие. Основным фактором, способствующим процессу фильтрации, является давление крови (гидростатическое) в капиллярах клубочков. К силам, препятствующим фильтрации, относится онкотическое давление белков плазмы крови и давление жидкости в полости капсулы клубочка, т.е. первичной мочи. Следовательно, эффективное фильтрационное давление представляет собой разность между гидростатическим давлением крови в капиллярах и суммой онкотического давления плазмы крови и внутрипочечного давления.Количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации, которая определяется путем сравнения концентрации определенного вещества в плазме крови и моче. Для этого используются вещества, которые являются физиологически инертными, нетоксичными, не связывающиеся с белками в плазме крови, не реабсорбирующиеся в почечных канальцах и выделяющиеся с мочой только путем фильтрации, Таким веществом является полимер фруктозы инулин. В организме человека инулин не образуется, поэтому для измерения скорости клубочковой фильтрации его вводят внутривенно, и меренная с помощью инулина скорость клубочковой фильтрации называется также коэффициентом, очищения от инулина, или клиренсом инулина.

В клинике для определения скорости клубочковой фильтрации обычно используют эндогенный метаболит креатшин, концентрация которого в крови довольно стабильна. Креатинин удаляется из крови в основном путем клубочковой фильтрации, но в очень малых количествах он секретируется, поэтому его клиренс — менее точный показатель, чем клиренс инулина. Тем не менее он широко используется в клинике, так как для его измерения не требуется внутривенное введение.

В норме у мужчин скорость клубочковой фильтрации составляет 125 мл/мин, а у женщин — 110 мл/мин.

Процесс образования мочи проходит в два этапа. Первый проходит в капсулах наружного слоя почек (почечном клубочке). Вся жидкая часть крови, которая поступает в клубочки почек, фильтруется и попадает в капсулы. Так образуется первичная моча, которая представляет собой практически плазму крови.

В первичной моче содержатся наряду с продуктами диссимиляции и аминокислоты, и глюкоза, и многие другие соединения, необходимые организму. Нет в первичной моче только белков из кровяной плазмы. Это и понятно: ведь белки не фильтруются.

Второй этап образования мочи заключается в том, что первичная моча проходит по сложной системе канальцев, где последовательно всасываются нужные для организма вещества и вода. Все вредное для жизнедеятельности организма остается в канальцах и в виде мочи выводится из почек по мочеточникам в мочевой пузырь. Эта конечная моча и называется вторичной.

21.Эндокринная функция поджелудочной железы. Значение гормонов поджелудочной железы в регуляции обмена веществ. Симптомы недостаточности эндокринной функции поджелудочной железы.

Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками

Лангерганса). Островки расположены преимущественно в хвостовой части железы, и небольшое их количество находится в головном отделе. В островках имеется несколько типов клеток:

а-Клетки вырабатывают глюкоган, в-клетки продуцируют инсулин, d-клетки синтезируют соматостатин, который угнетает секрецию инсулина и глюкагона. G-клетки вырабатывают гастрин, в ПП-клетках происходит выработка небольшого количества панкреатического полипептида, являющегося антагонистом холецистокинина. Основную массу составляют в-клетки, вырабаывающие инсулин. Инсулин влияет на все виды обмена веществ, но прежде всего

на углеводный. Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия). Это связано с тем, что инсулин способствует превращении: глюкозы в гликоген в печени и мышцах (гликогенез) Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген Инсулин также повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию. Кроме того,инсулин угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот. Инсулин стимулирует синтез белка из аминокислот и уютшает катаболизм белка Инсулин регулирует жировой обмен усиливая процессы липогенеза; способствует образованию да™£

из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани и способствует отложению жира в жировых депо.

Блуждающий нерв и ацетилхолин усиливают продукцию инсулина, симпатические нервы и норадреналин подавляют секрецию инсулина, антагонистами инсулина по характеру действия на углеводный обмен являются глюкагон, АКТГ, соматотропин, глюкокортикоиды, адреналин, тироксин. Введение этих гормонов вызывает гипергликемию.

Недостаточная секреция инсулина приводит к заболеванию,которое получило название сахарного диабета. Основными симптомами этого заболевания являются гипергликемия, глюкозурия, полиурия, полидипсия. У больных сахарным диабетом нарушается не только углеводный, но и белковый и жировой обмен. Усиливается липолиз с образованием большого количества несвязанных жирных кислот, происходит синтез кетоновых тел.

источник

Протекает в 3 фазы:

1. Фильтрация (клубочковая) – процесс образования первичной мочи.

2. Канальцевая реабсорбция (обратное всасывание) – образование вторичной мочи.

3. Секреция (канальцевая) – секреция в просвет канальцев некоторых чужеродных веществ: красок, лекарств, креатинина, NH3, Н + — образование конечной мочи.

1. Клубочковая фильтрация — процесс образования первичной мочи, связанный с перемещением веществ в клубочках из плазмы наружу в капсулу Боумена. Это пассивный процесс, при котором клетки эндотелиально-капсулярной мембраны не расходуют энергию. Вода и растворенные в ней вещества проходят через эту мембрану под действием градиента давления. Следовательно, фильтрация прямо пропорциональна артериальному давлению; при диастолическом давлении ниже 40 мм рт. ст. фильтрация прекращается.

Ø В почечных тельцах происходит фильтрация плазмы крови из капилляров клубочков в капсулу нефрона.

Ø Осуществляется благодаря разнице давления, поскольку сосуд, приносящий кровь, имеет больший диаметр, чем выносящий сосуд.

Ø В результате этой фильтрации образуется 150-170 л первичной мочи.

Ø Первичная моча – это плазма минус белок

→ кровь капилляры отфильтрованные в-ва капсула первичная моча

клубочка вода, мин. в-ва, витамины, клубочка по составу напоминает

мочевая кис-та, мочевина, плазму крови, только без

глюкоза, аминокислоты белков

Что обеспечивает эффективность фильтрации через мембраны почечных клубочков?

· 1.Клубочковые капилляры очень длинны, в результате чего достигается значительная площадь фильтрации

· Эндотелиально-капсулярная мембрана, выполняющая роль фильтра, тонка и имеет поры. Клубочковые капилляры примерно в 50 раз более проницаемы, чем капилляры в других органах. Базальная мембрана и поры пропускают лишь мелкие молекулы.

· Давление крови в капиллярах высокое. Диаметр эфферентной артериолы меньше чем афферентной. Следовательно, возникает повышенное сопротивление току крови на выходе из клубочка. Другими словами, в клубочке имеется повышенное гидростатическое давление. В норме базальная мембрана непроницаема для эритроцитов и белка. За 1 минуту образуется примерно 125 мл фильтрата.

Однако фильтрации препятствуют два фактора:

· Осмотическое давление белков плазмы, которые стремятся удержать жидкость в сосудах (коллоидное Осмотическое давление крови),

· давление в полости капсулы Боумена или внутри капсулярное гидростатическое давление.

Клубочковое коллоидное фильтрационное Внутрикапсулярное

гидростатическое —- осмотическое + давление = гидростатическое

давление крови давление крови 10 мм рт.ст. 15 мм рт.ст

фильтрации препятствуют фильтрации

Факторы, влияющие на эффективное фильтрационное давление:

· Увеличение клубочкового гидростатического давления вследствие системного повышения артериального давления или сужения эфферентной артериолы приводит к повышению эффективного фильтрационного давления.

· Уменьшения уровня белков плазмы приводит к снижению осмотического давления крови и усиливает клубочковую фильтрацию.

· Нервная регуляция: стимуляция симпатической нервной системы вызывает сужение сосудов, в результате понижается клубочковое гидростатическое давление и уменьшается клубочковая фильтрация.

· Повышенное артериальное давление вызывает повышение клубочкового гидростатического давления и, следовательно, усиливает клубочковую фильтрацию.

· Расширение афферентной артериолы вызывает повышение клубочковой фильтрации.

· Почечная ауторегуляция, или способность почки поддерживать постоянное давление крови, несмотря на изменения в системном артериальном давлении.

· Гормональная регуляция посредством ангиотензина П и предсердного натрийуретического пептида. Регуляция клубочкового давления обеспечивает условия для фильтрации под действием давления плазмы крови и предотвращения выхода ьелка в фильтрат. Повышение клубочкового давления приводит к увеличению скорости фильтрации, и наоборот. Если артериальное давление повышается, вызывая усиление почечного кровотока и повышение клубочкового давления, то сужение афферентной артериолы противодействует этим эффектам и поддерживает равновесие.

ЭТО ИНТЕРЕСНО:

Почки осуществляют фильтрацию крови с чрезвычайно высокой эффективностью. Для того, чтобы оценить фильтрационную способность почек, врачи вводят человеку в кровь радиоактивное вещество, а затем наблюдают за его распределением по организму. Оказывается, уже через 2-3 минуты радиоактивность обнаруживается в почке, а через 10-20 минут большая часть препарата собирается в мочевом пузыре.

2. Канальцевая реабсорбция – фаза обратного всасывания из первичной мочи в кровь – воды, глюкозы, части солей и небольшого количества мочевины, витамины, ферменты и др. В результате образуется конечная или вторичная моча. Процесс этот избирательный . Реабсорбция позволяет удалить вещества, количество которых превышает потребности организма, и сохраняет необходимые вещества. Канальцевая реабсорбция происходит по трем механизмам:

Реабсорбция происходит в следующих отделах канальцев:

Отдел канальцев Реабсорбируемые вещества
Проксимальные извитые канальцы Всасывание натрия, калия и глюкозы посредством активного транспорта Всасывание хлоридов посредством диффузии Облигатная реабсорбция воды – осмос Активный транспорт бикарбонатов, фосфатов и аминокислот Реабсорбция глюкозы происходит посредством активного транспорта.
Петля Генле В толстом отделе восходящего колена петли Генле клетки имеют каналы для совместного транспорта иона Na и k и двух ионов Сl из просвета канальца В восходящем колене реабсорбция воды незначительная или вовсе не происходит, в нисходящем колене вода реабсорбируется в небольшом количестве.
Дистальные извитые канальцы Процессы происходящие в этом отделе находятся под гуморальным контролем. Натрий реабсорбируется путем активного транспорта под действием альдостерона Калий и ионы водорода секретируются в каналец в обмен на ионы натрия. Значительная часть оставшейся воды реабсорбируется под действием антидиуретического гормона. Реабсорбируется бикарбонат. Секреция в просвет канальца аммиака способствует поддержанию кислотно-основного баланса.
Собирательные трубочки Реабсорбируется натрий Вода реабсорбируется посредством осмоса под контролем антидиуретического гормона.

Первичная почечныеобратное всасывание капилляры,образование

Моча канальцы оплетающиевторичной мочи

(мочевыводящие)вода, мин. соли, канальцывода, мочевая кис-та,

витамины, глюкоза, мочевина, мин. вещ-ва,

собирательнаямоча почечнуюпо мочеточ- мочевой

трубочкасобирается лоханкунику в пузырь

В сутки выделяется 1,5 – 2 л конечной мочи.

3. Канальцевая секреция – кроме реабсорбции клетки канальцевой части обладают экстренной функцией, т.е. выделяют в мочу некоторые вещества непосредственно из крови, при участии специальных ферментных систем.

При канальцевой секреции выделяются:

· Креатинин и некоторые лекарства (например пенициллин)

Канальцевая секреция выполняет две основные функции:

· Секреция ионов водорода позволяет регулировать рН крови

· Секреция других веществ приводит к их удалению из организма.

В зависимости от состояния организма эти системы могут менять направление активного переноса веществ, т.е. обеспечивают или их секрецию (выделение), или обратное всасывание. Благодаря этой функции из крови удаляются вещества, которые не проходят через почечный фильтр в клубочках. К ним относятся некоторые краски, многие лекарственные средства, например пенициллин. Конечная моча поступает в собирательные трубочки. В них происходит дальнейшее всасывание воды. Оттуда моча поступает в чашечку → мочеточник → мочевой пузырь.

Моча – прозрачная жидкость светло-желтого цвета, со специфическим запахом. При отстаивании в моче выпадает осадок, состоящий из солей и слизи.

рН – слабокислая от 4,5 до 8,0. Может меняться в зависимости от питания.

Ø смешанная пища (растительная и животный) – рН слабокислая

Ø мясная пища и пища, богатая белками – рН слабокислая

Ø растительная пища способствует переходу реакции мочи в нейтральную или даже щелочную

Плотность мочи = в среднем 1,015 – 1,020 и зависит от количества принятой жидкости.

Ø 95% воды и 4-5% твердых веществ

Ø пигменты (уробилин, урохром) – от которых зависит цвет.

В норме белок отсутствует или определяются только следы (не > 0,03%). В моче не должно быть форменных элементов, сахара и белка. Суточное образование и выделение мочи называется суточный диурез.

Ø после употребления белковых продуктов диурез увеличивается (продукты распада Б стимулируют мочеобразование)

Ø при усиленном потоотделении – диурез сокращается

Ø днем мочи образуется больше

Ø ночная моча темная и более концентрированная

Ø при длительной работе происходит снижение выделения мочи из организма

Ø Выделение большого количества мочи – полиурия

Ø Малое количество мочи – олигоурия

Ø Отсутствие мочи – анурия

Ø Наличие глюкозы в моче – глюкозурия

Ø Лейкоциты в моче – пиурия

Ø Наличие белка в моче — протеиноурия

Дата добавления: 2013-12-13 ; Просмотров: 2345 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Функции почки

  1. Выделительная (удаляют из организма продукты обмена веществ, излишки Н2О, солей).
  2. Участие в регуляции постоянства внутренней среды организма (гомеостаза):

регулируют осмотическое давление

регулируют ионный состав крови

Процесс образования и выделения мочи называется диурез.

В образовании мочи участвуют все отделы нефрона. Этот процесс начинается в клубочках. По мере прохождения крови через клубочки из нее путем клубочковой фильтрации интенсивно образуется первичная моча. В дальнейшем фильтрат проходит через почечные канальцы. Состав его при этом существенно изменяется благодаря канальцевой реабсорбции и канальцевой секреции (образуется вторичная моча).

Фильтрация – процесс перехода плазмы крови с растворенными веществами в полость капсулы. Процессу фильтрации способствует высокое давление крови в капиллярах клубочка (70 мм.рт.ст.). Однако есть факторы, препятствующие фильтрации:

  1. белки крови удерживают воду в сосудистом русле (создают онкотическое давление, равное 25 мм.рт.ст.)
  2. давление жидкости, находящейся в полости капсулы, также уменьшает величину фильтрации ( создает гидростатическое давление в касуле, равное 15 мм.рт.ст.)
Читайте также:  Почему моча красная после употребления свеклы моча окрашивается в красный цвет

Изменение любого из этих показателей изменяет фильтрацию.

Скорость фильтрации зависит от эффективного фильтрационного давления (ЭФД). ЭФД равно разности давления крови в капиллярах клубочка и суммы гидростатического и онкотического давления.

В сутки образуется 150-180 л фильтрата, его состав соответствует составу плазмы крови. Концентрация низкомолекулярных веществ в плазме крови и фильтрате примерно одинаковы. Белков плазмы в фильтрате практически нет. Крупные их молекулы не фильтруются.

Реабсорбция — обратное всасывание в почечных канальцах из первичной мочи в кровь нужных для организма веществ, продуктов обмена веществ (небольшое количество мочевины). В результате образуется конечная, или вторичная моча. Ее количество равно 1-1,5 л.

Активная осуществляется при участии ферментных систем в эпителии почечных канальцев, идет с затратой энергии АТФ против градиента концентрации веществ. Для каждого вещества существует свой фермент – переносчик.

Пассивная реабсобция протекает без затраты энергии за счет диффузии и осмоса.

Обратное всасывание в разных частях нефрона неодинаково. Максимальное всасывание происходит в проксимальном канальце. Здесь реабсорбируются аминокислоты, глюкоза, витамины, соли, вода.

В петле Генле реабсорбируются вода и ионы натрия. Стенка нисходящего колена петли проницаема для воды, стенка восходящего отдела не пропускает воду, но активно реабсорбирует натрий.

В дистальных канальцах реабсорбируется натрий.

В собирательных трубочках реабсорбируется вода.

Кроме реабсорбции, в канальцах идет процесс секреции, т.е. выделение в просвет канальцев из крови или клеток эпителия канальцев некоторых веществ. К таким веществам относятся, например, аммиак, некоторые лекарственные вещества.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9323 — | 7407 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Мочеобразование осуществляется за счет трех последовательных процессов:

    1) клубочковой фильтрации (ультрафильтрации) воды и низкомолекулярных компонентов из плазмы крови в капсулу почечного клубочка с образованием первичной мочи;
    2) канальцевой реабсорбции — процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи в кровь;
    3) канальцевой секреции — процесса переноса из крови в просвет канальцев ионов и органических веществ.

Фильтрация воды и низкомолекулярных компонентов из плазмы крови в полость капсулы происходит через клубочковый, или гломерулярный, фильтр. Гломерулярный фильтр имеет 3 слоя: эндотелиальные клетки капилляров, базальную мембрану и эпителий висцерального листка капсулы, или подоциты. Эндотелий капилляров имеет поры диаметром 50-100 нм, что ограничивает прохождение форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов). Основным барьером для фильтрации является базальная мембрана.

Поры в базальной мембране составляют 3 — 7,5 нм. Эти поры изнутри содержат отрицательно законные молекулы (анионные локусы), что препятствует прошению отрицательно заряженных частиц, в том числе белков. Третий слой фильтра образован отростками подоцитов, между которыми имеются щелевые диафрагмы, которые ограничивают прохождение альбуминов и других молекул с большой молекулой массой. Эта часть фильтра также несет отрицательный заряд. Легко фильтроваться могут вещества с молекулярной массой более 5500, абсолютным пределом для прохождения частиц через фильтр в норме является молекулярная масса 80 000.

При нефропатиях, нефритах поры теряют отрицательный заряд, что приводит к прохождению через них многих белков. Такие вещества, как гепарин, способствуют восстановлению анионных локусов, а антибиотики, наоборот, уменьшают их наличие.

Основным фактором, способствующим процессу фильтрации, является давление крови (гидростатическое) в капиллярах клубочков. К силам, препятствующим фильтрации, относится онкотическое давление белков плазмы крови и давление жидкости в полости капсулы клубочка, т.е. первичной мочи. Следовательно, эффективное фильтрационное давление представляет собой разность между гидростатическим давлением крови в капиллярах и суммой онкотического давления плазмы крови и внутрипочечного давления:

Рфильтр. = Ргидр. — (Ронк. +Рмочи).

Таким образом, фильтрационное давление составляет:

Количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации, которая определяется путем сравнения концентрации определенного вещества в плазме крови и моче. Для этого используются вещества, которые являются физиологически инертными, нетоксичными, не связывающиеся с белками в плазме крови, не реабсорбирующиеся в почечных канальцах и выделяющиеся с мочой только путем фильтрации.

где Син — клиренс инулина, Мин — концентрация инулина в конечной моче, Пин — концентрация инулина в плазме, V — объем мочи в 1 мин.

Клиренс показывает, какой объем плазмы (в мл) очистился целиком от данного вещества за 1 мин.
Сравнивая клиренсы других веществ с клиренсом инулина, можно определить процессы, участвующие в выделении этих веществ с мочой. Если клиренс вещества равен клиренсу инулина, следовательно это вещество только фильтруется. Если клиренс вещества больше клиренса инулина, значит это вещество выделяется не только за счет фильтрации, но и секреции. Если клиренс вещества меньше клиренса инулина, то вещество после фильтрации реабсорбируется.

В клинике для определения скорости клубочковой фильтрации обычно используют эндогенный метаболит креатинин, концентрация которого в крови довольно стабильна. Креатинин удаляется из крови в основном путем клубочковой фильтрации, но в очень малых количествах он секретируется, поэтому его клиренc — менее точный показатель, чем клиренс инулина. Тем не менee он широко используется в клинике, так как для его измерения не требуется внутривенное введение.
В норме у мужчин скорость клубочковой фильтрации составляет 125 мл/мин, а у женщин — 110 мл/мин.

Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 — 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

Канальцевая реабсорбция — это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ — АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Ма4′. Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны.

В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков.

В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкозурия). Эта ситуация характеризуется понятием «максимальный канальцевый транспорт» (Тм). Величине максимального канальцевого транспорта соответствует старое понятие «почечный порог выведения». Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и аминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот. Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20-75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления.

Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся — в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой.

Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% — в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме Того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% — в петле нефрона, 9% — в дистальном извитом канальце и 1% — в собирательных трубочках.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ — АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них — это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода — наружу.

Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.
Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, К+ — АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.
Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы.

Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови.

В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной.

Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na»1″ и мочевины, и моча становится все более концентрированной.

При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.

Канальцевая секреция — это транспорт веществ из крови в просвет канальцев (мочу). Канальцевая секреция позволяет быстро экскретировать некоторые ионы, например калия, органические кислоты (мочевая кислота) и основания (холин, гуанидин), включая ряд чужеродных организму веществ, таких как антибиотики (пенициллин), рентгеноконтрастные вещества (диодраст), красители (феноловый красный), парааминогиппуровую кислоту — ПАГ.

Канальцевая секреция представляет собой преимущественно активный процесс, происходящий с затратами энергии для транспорта веществ против концентрационного или электрохимического градиентов. В эпителии канальцев существуют разные системы транспорта (переносчики) для секреции органических кислот и органических оснований. Это доказывается тем, что при угнетении секреции органических кислот пробенецидом секреция оснований не нарушается.

Транспортные секретирующие механизмы обладают свойством адаптации, т.е. при длительном поступлении вещества в кровоток количество транспортных систем за счет белкового синтеза постепенно увеличивается. Данный факт необходимо учитывать, например, при лечении пенициллином. Так как очищение крови от него постепенно возрастает, требуется увеличение дозировки для поддержания необходимой терапевтической концентрации.

Так как при невысоких концентрациях в крови ПАГ или диодраста они полностью удаляются из крови при однократном прохождении через почку путем секреции клетками проксимальных канальцев, это позволило, определяя клиренс этих веществ, получить значение объема плазмы крови, которое протекает по сосудам коркового вещества почки, т.е. эффективного почечного плазмотока. Зная гематокрит, можно рассчитать и величину коркового кровотока в почке.

Читайте также:  Что влияет на окрас мочи

Кроме того, канальцевый эпителий синтезирует и секретируют вещества, образующиеся в самих клетках эпителия, например, аммиак (путем дезаминирования некоторых аминокислот), гиппуровую кислоту (из бензойной кислоты и гликокола), которые выделяются с мочой, а также ренин, простагландины, глюкозу почек, поступающие в кровь.

Таким образом, состав конечной мочи зависит от процессов фильтрации, реабсорбции и секреции.

источник

Клубочковая фильтрация в почках. Состав первичной мочи. Факторы, определяющие интенсивность клубочковой фильтрации

Клубочковая фильтрация (КФ) представляет собой ультрафильтрацию воды и низкомолекулярных компонентов плазмы через клубочковый фильтр. В клинической практике оценивается скорость процесса, т. е. клубочковая фильтрация в единицу времени. В норме скорость клубочковой фильтрации составляет 100-120 мл/мин, т. е. приблизительно 20% от величины почечного плазмотока ежеминутно подвергается процессу ультрафильтрации в почечных клубочках.

Фильтрация в клубочках — процесс пассивный. Он происходит под влиянием гидростатического давления, создаваемого работой сердца. Во время ультрафильтрации из капилляра в капсулу клубочка переходит жидкая часть плазмы крови с растворенными в ней низкомолекулярными веществами, а в просвете капилляра остаются белки и крупномолекулярные компоненты.

Скорость клубочковой фильтрации определяется следующими факторами:

· коэффициентом ультрафильтрации, который зависит от проницаемости капилляров и общей фильтрующей поверхности капилляров;

· гидростатическим давлением в почечных капиллярах, которое в значительной степени определяется величиной системного АД;

· величиной коллоидно-осмотического (онкотического) давления, которое создается белками плазмы, не проникающими через почечный фильтр, и которое противодействует процессу фильтрации.

Процессу КФ, так же как и почечному кровотоку, свойствен феномен ауторегуляции, т. е. способность сохранять постоянство фильтрации при колебаниях системного АД в пределах от 90 до 190 мм рт. ст. Способность к ауторегуляции клубочковой фильтрации обеспечивает постоянство процесса мочеобразования.

Снижение мочеотделения выявляется при уменьшении системного АД ниже 90 мм рт. ст. Анурия вследствие снижения фильтрации развивается лишь при падении систолического АД низке 50 мм рт. ст.

Образование мочи начинается с фильтрации капиллярами клубочков большого количества жидкости в капсулу Боумена. Как и другие капилляры, сосуды клубочка относительно непроницаемы для белков, поэтому профильтрованная жидкость, называемая первичной мочой, практически не содержит белка, она также свободна от всех клеточных элементов, включая эритроциты.

Концентрации других составляющих первичной мочи, включая большинство солей и органических молекул, схожи с содержанием этих веществ в плазме. Исключениями из правил являются несколько низкомолекулярных веществ, таких как кальций и жирные кислоты, не способные к свободной фильтрации вследствие частичной связи с белками плазмы. Почти половина кальция в плазме и большая часть жирных кислот связаны с белками, поэтому эти вещества не проходят через почечный фильтр.

Капилляры клубочка отличает значительно больший, по сравнению с другими, объем фильтрации вследствие высокого уровня гидростатического давления и значительного Кф В среднем СКФ у взрослого человека составляет 125 мл/мин или 180 л/сут. Часть плазмы, которая подвергается фильтрации в почках (фракция фильтрации), составляет величину 0,2. Это означает, что 20% плазмы, проходящей через почки, фильтруется в клубочках.

Фракцию фильтрации рассчитывают по формуле: Фракция фильтрации = СКФ/Объем плазмотока через почку. Мембрана капилляров клубочков — трехслойная (у других капилляров — двуслойная) и состоит из: (1) эндотелия капилляра; (2) базальной мембраны; (3) слоя эпителиальных клеток (подоцитов), окружающих наружную поверхность базальной мембраны капилляров. Эти слои, соединенные вместе, создают фильтрационный барьер, который, несмотря на трехслойность, способен пропускать в сотни раз больше воды и растворенных веществ, чем в обычном капилляре. Даже при высоких темпах фильтрации мембрана клубочков непроницаема для белков.

Высокие параметры фильтрации в мембране клубочка отчасти обусловлены ее особенностями. Эндотелий капилляров содержит тысячи небольших отверстий, называемых фенестрами, схожих по строению с фенестрированными капиллярами, обнаруженными в печени. Несмотря на значительный размер фенестр, эти отверстия непроницаемы для белков, т.к. эндотелиоцитам присущ отрицательный заряд, препятствующий проникновению белков.

Окруженная эндотелием базальная мембрана содержит сеть фибрилл коллагена и протеогликанов, между волокнами сети имеются большие промежутки, через которые могут проникать вода и небольшие молекулы растворенных веществ. Базальная мембрана успешно препятствует фильтрации белков плазмы — отчасти за счет высокого отрицательного заряда, связанного с протеогликанами.

Завершающая часть мембраны клубочка представлена слоем эпителиальных клеток, образующих прерывистую наружную выстилку клубочка. Эти клетки образуют отростки в виде ножек, оплетающих наружную поверхность капилляров. Между ножками расположены промежутки, называемые продольными порами, через которые перемещается первичная моча. Эпителиальные клетки, которые также заряжены отрицательно, дополнительно ограничивают фильтрацию белков. Таким образом, проникновение белков в первичную мочу предотвращается с помощью всех слоев мембраны клубочка.

Первичная моча по своему составу представляет собой плазму, практически лишённую белков. А именно, количество креатинина, аминокислот, глюкозы, мочевины, низкомолекулярных комплексов и свободных ионов в ультрафильтрате совпадает с их количеством в плазме крови. Из-за того, что клубочковый фильтр не пропускает белки-анионы, для поддержания мембранного равновесия Доннана (произведение концентраций ионов с одной стороны мембраны равно произведению их концентраций с другой стороны) в первичной моче концентрация анионов хлора и бикарбоната становится примерно на 5 % больше и, соответственно, пропорционально меньше концентрация катионов натрия и калия, чем в плазме крови. В ультрафильтрат попадает небольшое количество одних из самых мелких молекул белка — почти 3 % гемоглобина и около 0,01 % альбуминов.

Факторы, определяющие интенсивность клубочковой фильтрации

В физиологических условиях величина клубочковой фильтрации изменяется в зависимости от психического и физического состояния обследуемого, состава пищи, степени гидратации, времени суток и т. д. Однако колебания показателя происходят в нормальных или близких к норме пределах. С увеличением возраста величина клубочковой фильтрации постепенно снижается (примерно на 1% в год после 40 лет).

В патологических условиях скорость клубочковой фильтрации, как правило, снижается. Снижение клубочковой фильтрации свидетельствует об уменьшении фильтрационной функции почек, развивающейся вследствие уменьшения массы действующих нефронов. При уменьшении клубочковой фильтрации до 50- 30 мл/мин и ниже развивается азотемия и уремия. Снижение скорости клубочковой фильтрации может быть обусловлено и гемодинамическими факторами — гипотонией, шоком, гиповолемией, дегидратацией, выраженной сердечной недостаточностью. Повышение внутрипочечного давления в результате затруднений в оттоке мочи и при возрастании венозного давления в почке также сопровождается падением скорости клубочковой фильтрации.

Повышение величины фильтрации наблюдается на ранних этапах развития сахарного диабета, гипертонической болезни, системной красной волчанки, нефротического синдрома.

Для определения скорости клубочковой фильтрации в клинической практике применяется метод клиренса. В качестве маркеров используют инулин, эндогенный и экзогенный креатинин, ЭДТА — вещества, которые фильтруются в почечных клубочках и не реабсорбируются и не секретируются почечными канальцами.

Дата добавления: 2015-06-12 ; просмотров: 3873 . Нарушение авторских прав

источник

Физиология мочевыделительной системы: Механизм образования и выведения мочи. Регуляция деятельности почек

В течение суток человек потребляет около 2,5 л воды, в том числе 1,5 л в жидком виде и около 650 мл с твердой пищей. В организме, в процессе распада белков, жиров и углеводов, образуется еще около 400 мл воды. Из организма вода выводится главным образом через почки: 1,5 л в сутки; а также через легкие, кожу и частично с калом.

Механизмы мочеобразования

Мочеобразование осуществляется за счет 3 последовательных процессов:

1. клубочковой фильтрации (ультрафильтрации) воды и низкомолекулярных компонентов из плазмы крови в капсулу почечного клубочка с образованием первичной мочи;
2. канальцевой реабсорбции — процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи в кровь;
3. канальцевой секреции — процесса переноса из крови в просвет канальцев ионов и органических веществ:
— лекарств
— креатинина
— протонов водорода.

Клубочковая фильтрация.

Механизм образования первичной мочи.

В почечных тельцах (клубочек с капсулой) происходит фильтрация плазмы крови из капилляров клубочков в полость капсулы нефрона.

Фильтрация — это процесс прохождения воды и растворенных в ней веществ под действием разности давления по обе стороны мембраны. За сутки образуется 150 — 180 л первичной мочи.

Кроме продуктов распада (мочевина, мочевая кислота) имеются все составные части плазмы крови за исключением белков: аминокислоты, глюкоза, витамины, соли.

Состав первичной мочи впервые был исследован Ричардсом, который получил мочу непосредственно из капсулы почечного тельца, путем введения микропипетки в полость капсулы и установил, что первичная моча — это плазма, лишенная белка.

Фильтрация воды и низкомолекулярных компонентов из плазмы крови 1 в полость капсулы проходит через клубочковый (гломерулярный) фильтр.

Гломерулярный фильтр имеет 3 слоя:
1. эндотелиальные клетки капилляров
2. базальная мембрана
3. эпителий висцерального листка капсулы, или подоциты.

Эндотелий капилляров имеет поры диаметром 50-100 мл, что ограничивает прохождение форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов). Основным барьером для фильтрации является базальная мембрана. Поры в ней составляют 3-7,5 нм и изнутри содержат отрицательные молекулы, что препятствует проникновению отрицательно заряженных частиц, в том числе белков. Третий слой фильтра образован отростками подоцитов, между которыми имеются щелевые диафрагмы — они ограничивают прохождение альбуминов и других молекул с большой молекулярной массой, эта часть фильтра также несет отрицательный заряд.

Таким образом, состав первичной мочи образован свойствами гломерулярного фильтра. В норме вместе с водой фильтруются все низкомолекулярные вещества, за исключением большей части белков и форменных элементов крови. В остальном состав ультрафильтрата близок к плазме крови.

Основным фактором, способствующим процессу фильтрации, является гидростатическое давление крови в капиллярах клубочков.

К факторам, препятствующим фильтрации, относятся:
— окотическое давление белков плазмы крови
— давление жидкости в полости капсулы, клубочка, т.е. первичной мочи.

Следовательно, эффективное фильтрационные давленые представляет разность между гидростатическим давлением крови в капиллярах и суммой онкотического давления плазмы крови и внутрипочечного давления.

Рфильтр. = Ргидр. — (Ронк + Рмочи)
Таким образом, фильтрационное давление составляет: 70 — (30+20) = 20 мм рт ст.

Количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации, которая определяется путем сравнения концентрации определенного вещества в плазме крови и моче. Для этого используются вещества, обладающие следующими свойствами:
— физиологически нетоксичные,
— инертные
— не связываются с белками в плазме крови
— не реабсорбируются в почечных канальцах
— выделяются с мочой только путем фильтрации.

Например, таким веществом является полимер фруктозы инулин, который не образуется в организме и его вводят внутривенно для измерения скорости клубочковой фильтрации. Измеренная с помощью инулина скорость клубочковой фильтрации называется также коэффициентом очищения от инулина (клиренсом инулина).
Син = Мин · V/ Пин, где
Син – клиренс инсулина,
Мин — концентрация инулина в конечной моче
V — объем мочи в 1 мин
Пин — концентрация инулина в плазме.

Клиренс показывает, какой объем плазмы (в мл) очистился целиком от данного вещества за 1 мин. При сравнении клиренса других веществ с клиренсом инулина можно определить процессы, участвующие в выделении этих веществ с мочой. Если клиренс вещества равен клиренсу инулина, следовательно, это вещество только фильтруется. Если клиренс вещества больше клиренса инулина, значит это вещество выделяется не только за счет фильтрации, но и секреции. Если клиренс вещества меньше клиренса инулина, то вещество после фильтрации реабсорбируется.

В клинической практике для определения скорости клубочковой фильтрации используют эндогенный метаболит креатинам, концентрация которого в крови довольно стабильна. Креатинин удаляется из крови в основном путем клубочковой фильтрации, но в очень малых количествах он секретируется, поэтому его клиренс — менее точный показатель, чем клиренс инулина. Широкое использование в клинике креатинина определяется тем, что для его измерения не требуется внутривенное введение.

В норме скорость клубочковой фильтрации составляет:

у мужчин 125 мл/мин; у женщин — 110 мл/мин.

В результате фильтрации за сутки образуется около 150-180 л первичней мочи. Большой объем ультрафильтрата является результатом:
— наличия фильтрационного давления, обильного кровоснабжения почек;
— обширной (до 2 кв. м) фильтрационной поверхности капилляров клубочков. .

Канальцевая реабсорбция

Механизм образования вторичной (конечной) мочи.

Первичная моча из капсулы поступает в почечные канальцы. По мере, ее прохождения через канальцы происходит реабсорбция — обратное всасывание в кровь:
— глюкозы
— аминокислот
— микроэлементов
— ионов натрия, хлора, гидрокарбоната
— витаминов
— воды
— солей.

Из 150 л первичной мочи образуется 1,5 л конечной.

Обратное всасывание различных веществ в канальцах может происходить активно и пассивно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбции:
— воды
— хлора
— мочевины.

Активным транспортом называется перенос вещества против электрохимического и концентрационного градиентов.

Различают:
1. первично-активный
2. вторично-активный транспорт.

Первично-активный транспорт происходит с затратой энергии клетки. Например, перенос ионов натрия с помощью фермента натрий-калиевой АТФ-азы, который использует энергию АТФ.

Вторично-активный транспорт — перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируется глюкоза и аминокислоты.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа поворотно-противоточной множительной системы.

Реабсорбция воды и электролитов в петле нефрона.

Концентрация первичной мочи в извитом канальце первого порядка изотонична крови почечной артерии. В нисходящем колене петли нефрона осмотическая концентрация мочи нарастает, достигая максимума в месте поворота петли: здесь она более чем в 7 раз превышает осмотическую концентрацию крови почечной артерии. По мере продвижения мочи по восходящему колену петли нефрона в направлении от почечного сосочка к корковому слою осмотическая концентрация мочи вновь снижается. В месте перехода петли в дистальный извитой каналец она в 3 раза меньше осмотической концентрации крови.

Спускаясь затем по дистальному канальцу и особенно по собирательной трубке к почечному сосочку, моча вновь приобретает высокую осмотическую концентрацию. Осмотическая концентрация крови, содержащейся в капиллярах, оплетающих почечные канальцы, и межклеточной жидкости, непостоянна и на всех уровнях нефрона соответствует осмотической концентрации мочи, а градиент концентрации имеется только вдоль петли нефрона и собирательной трубки.

Осмотическая концентрация мочи повышается по мере ее продвижения от коркового слоя к сосочковому и снижается в. обратном направлении. Осмотическая концентрация крови и тканевой жидкости вокруг канальцев нефрона изоосмотична моче, которая находится в канальце данного участка.

Почка — единственный орган, не имеющий постоянства осмотического давления. Осмотическая концентрация в почке возрастает в направлении от коркового слоя к мозговому и достигает максимума у сосочков лоханки. Эти факты послужили основанием для создания поворотно-противоточной, теории, которая объясняет процесс реабсорбции воды и веществ.

В механизме образования мочи и поддержания осмотического гомеостаза важная роль принадлежит осмотической концентрации и разведению мочи, которые осуществляются по принципу поворотно-противоточной системы.

Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно).

Противоточный механизм состоит в том, что движение канальцевой жидкости в нисходящем и восходящем отделах петли Генле, а также в прямых артериальных и венозных сосудах юкстамедуллярных нефронов происходит в противоположном направлении. Поворотный механизм осуществляется в самом колене петли Генле, где движение канальцевой жидкости получает обратное направление (рис. 7).

В основе функционирования поворотно-противоточной системы лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга, параллельно в глубь мозгового вещества проходят собирательные и кровеносные капилляры.

Рисунок 7. Схема функционирования противоточно-поворотной системы почек. а — активная реабсорбция натрия и мочевины; б — реабсорбция воды в соответствии с концентрационным градиентом; в-окончательная концентрация мочи (реабсорбция воды) в дистальных канальцах и собирательных трубках. 1 и 2 — глубокая и наружная зоны мозгового вещества; 3 — корковое вещество; 4 — почечная капсула; 5 — тонкий нисходящий сегмент петли Гейле; б — тонкий восходящий сегмент петли Геняе; 7 — восходящий толстый сегмент петли Геняо; В — дистальный извитой Каналец; 9 — собирательная трубка; 10 — концентрационный градиент осмотически активных веществ, 11 — мочевина

Принцип функционирования поворотно-противоточного механизма включает следующие физиологические характеристики почек:

Читайте также:  Недержание мочи у женщин операция в ростове

1. Эпителий тонкого нисходящего, отдела имеет щелевидные пространства шириной до 7 км.
2. Чем дальше в мозговое вещество спускается петля, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм/л в коре до 1200- 1400 мосм/л на верхушке сосочка).
3. Восходящее колено почти непроницаемо для воды.
4. Эпителий восходящего отдела активно, с помощью транспортных систем выкачивает натрий и хлор.

В почечном поворотно-противоточном механизме движущей силой является активная реабсорбция натрия на всем протяжении восходящего колена петли Генле, в результате чего и достигается столь большая осмотическая разница вдоль канальцев нефрона при отсутствии на любом уровне поперечного градиента: в этом участке нефрона натрий активно реабсорбируется, а вода не пропускается.

При прохождении мочи через нисходящий отдел петли Генле она постепенно концентрируется вследствие перехода воды в тканевую жидкость по осмотическому градиенту, который создается выходом натрия из рядом расположенной восходящей части петли Генле. Переход натрия из дистального отдела петли Генле повышает осмотическое давление тканевой жидкости, которое компенсируется встречным током воды. Процессы выхода воды и натрия сопряжены.

В результате выхода натрия гипертоничная у вершины петли моча становится затем изотоничной и даже гипотоничной (по отношению к плазме крови) в конце восходящего канальца петли Генле. Осмотическое давление мочи в нисходящем канальце в результате всасывания воды постепенно повышается, а осмотическое давление мочи в восходящем колене вследствие реабсорбции натрия столь же постепенно снижается.

Таким образом, между двумя соседними участками канальца разница в давлении невелика, а по ходу петли эти небольшие перепады в каждом участке канальца суммируются, что приводит к очень большому градиенту давления между началом, концом и вершиной петли Генле. Петля Генле работает как концентрирующий механизм и благодаря своему строению обладает высокой способностью к концентрированию при минимальной затрате энергии.

В результате действия поворотно-противоточной системы осмотическое давление возрастает в направлении от пограничной зоны (280-300 моем моль/л) к вершинам пирамид (1200-1500 мосм моль/л), создавая так называемый вертикальный концентрационный градиент, который обеспечивается:

1. активной реабсорбцией натрия в толстом восходящем колене петли Генле, происходящей без эквивалентного всасывания воды, так как стенки этого отдела непроницаемы для воды; что приводит к повышению концентрации ионов натрия в наружной зоне мозгового вещества.

2. активной реабсорбцией мочевины в собирательных трубках, что увеличивает концентрацию осмотически активных веществ в глубокой зоне мозгового вещества.

В начальный отдел нисходящего участка поступает фильтрат, имеющий более низкое осмотическое давление, чем у окружающего вещества. По мере опускания по нисходящему отделу фильтрат, отдавая воду, постоянно имеет осмотический градиент с межклеточной жидкостью, поэтому вода покидает фильтрат на всем протяжении нисходящего колена, что обеспечивает здесь реабсорбщда около 15% ее объема от первичной мочи.

Под влиянием концентрационного градиента происходит пассивная реабсорбция воды из канальцев в интерстициальную ткань по всему нисходящему колену петли Генле, что приводит к нарастанию концентрации канальцевой жидкости от начала нисходящего отдела петли Генле до ее поворота в восходящий отдел.

Затем канальцевая жидкость попадает в восходящий тонкий сегмент петли нефрона, который также проницаем только для воды, и движется по направлению к наружной зоне мозгового вещества, где концентрация осмотически активных веществ ниже, чем у поворота петли. Поэтому вода поступает здесь из интерстициальной ткани почки в просвет канальца.

Восходящий толстый отдел петли Генле непроницаем для воды и проницаем для ионов натрия, здесь снова продолжается реабсорбция ионов натрия, но уже без эквивалентного количества воды, как в проксимальном канальце, поэтому концентрация канальцевой жидкости снижается, происходит ее разведение.

На базальной мембране эпителиальных клеток имеются системы активного выкачивания натрия и хлора. В результате концентрация этих ионов в проходящем здесь фильтрате может снижаться до 30-40 ммоль/л. Здесь реабсорбируется до 25% натрия. Активное выкачивание, хлорида натрия из эпителия восходящего отдела петли Гейле создает повышенное осмотическое давление межклеточной жидкости, благодаря этому из предшествующего, нисходящего отдела в интерстиций диффундирует вода.

В дистальном извитом канальце и собирательных трубках происходит дальнейшая факультативная реабсорбция воды, и концентрация канальцевой жидкости увеличивается; причем степень такой концентрации зависит от потребностей организма и регулируется АДГ, а реабсорбция натрия — альдостероном.

Окончательное концентрирование мочи происходил в собирательных трубках. Интенсивность такой концентрации зависит от 2 факторов:

1. способности почек создавать в интерстициальной ткани мозгового вещества концентрационной градиент осмотически активных веществ, т.е. от концентрационной способности почек;
2. потребности организма в жидкости и осмотически активных веществ.

В отличие от наружной зоны мозгового вещества почки, где повышение осмолярной концентрации основано главным образом на транспорте ионов натрия и хлора, во внутреннем мозговом веществе почки это повышение обусловлено, участием ряда веществ, среди которых важнейшее значение имеет мочевина — для нее стенки проксимального канальца проницаемы.

В проксимальном канальце реабсорбируется до 50% профильтровавшейся мочевины, однако в начале дистального канальца количество мочевины несколько больше, чем количество мочевины, поступившей с фильтратом.

Имеется система внутрипочечного кругооборота мочевины, которая участвует в осмотическом концентрировании мочи. При антидиурезе АДГ увеличивает проницаемость собирательных трубок мозгового вещества почки не только для воды, но и мочевины. В просвете собирательных трубок вследствие реабсорбции воды повышается концентрация мочевины.

Когда проницаемость канальцевой стенки для мочевины увеличивается, она диффундирует в мозговое вещество ночки. Мочевина проникает в просвет прямого сосуда и тонкого отдела петли нефрона. Поднимаясь по направлению к корковому веществу почки по прямому сосуду, мочевина непрерывно участвует в противоточном обмене, диффундирует в нисходящий отдел прямого сосуда и нисходящую часть петли нефрона.

Постоянное поступление во внутреннее мозговое вещество мочевины, ионов натрия и хлора, реабсорбируемых клетками тонкого восходящего отдела петли нефрона и собирательных трубок; удержание этих веществ благодаря деятельности противоточной системы прямых сосудов и петель нефрона обеспечивает повышение концентрации осмотически активных веществ во внеклеточной жидкости во внутреннем мозговом веществе почки.

Вслед за увеличением осмолярной концентрации интерстициальной жидкости, окружающей собирательную трубку, возрастает реабсорбция воды и повышается эффективность осморегулирующей функции почки. Эти данные об изменении проницаемости канальцевой стенки для мочевины объясняют, почему очищение от мочевины уменьшается при снижении мочеотделения.

В связи с выходом воды осмотическое давление мочи постепенно повышается, достигая максимума в области поворота петли. Гиперосмотическая моча поднимается по восходящему колену, где теряет ионы натрия и хлора, которые выводятся активной работой транспортных систем, поэтому в дистальные канальцы фильтрат поступает даже гипоосмотическим (около. 100-200 мосм/л). Таким образом, в нисходящем колене происходит процесс концентрации мочи, а в восходящем — ее разведение, но без поступления сюда воды.

Немаловажное значение в этом процессе имеют и кровеносные капилляры, которые как бы дублируют ход петли Генле. Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют сосудистую противоточную систему: из нисходящей части капилляра в паренхиму вода может поступать, а в восходящий отдел она возвращается; одновременно с этим в капилляры поступают ионы и другие соединения, а из них в паренхиму могут выходить дополнительно субстраты для выделения. Ускорение кровотока в этих капиллярах обеспечивает активное «вымывание» из интерстиция осмотически активных веществ.

Благодаря такому расположению прямых сосудов обеспечивается эффективное кровоснабжение мозгового вещества почки, но не происходит «вымывание» из крови осмотически активных веществ, так как при прохождении крови по прямым сосудам наблюдаются такие же изменения ее осмотической концентрации, как и в тонком нисходящем отделе петли нефрона.

При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней постепенно возрастает, а во время обратного движения крови к корковому веществу соли и другие вещества, диффундирующие через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки, и прямые сосуды функционируют как противоточная система. Скорость движения крови по прямым сосудам определяет количество удаляемых их мозгового вещества солей и мочевины и отток реабсорбируемой воды.

Отличительные особенности нефронов, расположенных в различных отделах почек, особенно сказываются на активности реабсорбции в петле Генле, Чем длиннее петля Генле (юкстамедуллярные нефроны), тем более выражены в них процессы концентрации мочи.

Канальцевая секреция.
Эпителий канальцев выполняет не только всасывающую функцию, но и секреторную.

Канальцевом секреция — это транспорт веществ из крови в просвет канальцев (мочу). Канальцевая секреция позволяет экскретировать некоторые ионы, например, калия, органические кислоты (мочевая кислота) и основания (холин, гуанидин). А также ряд чужеродных для организма веществ, таких как антибиотики (пенициллин), рентгеноконтрастные вещества (диодраст), красители (феноловый красный).

Канальцевая секреция представляет собой преимущественно активный процесс, происходящий с затратами энергии для транспорта веществ против концентрационного или электрохимического градиентов. В эпителии канальцев существуют разные системы транспорта (переносчики) для секреции органических кислот и органических оснований. Это подтверждается тем, что при угнетении секреции органических кислот пробенецидом, секреция оснований не нарушается.

Транспортные секретирующие механизмы обладают свойством адаптации, т.е. при длительном поступлении вещества в кровоток количество транспортных систем за счет белкового синтеза постепенно увеличивается. Это учитывают при лечении пенициллином. Так как очищение крови от него постепенно возрастает, необходимо увеличение дозировки для поддержания необходимой терапевтической концентрации.

Канальцевый эпителий синтезирует и секретирует вещества, образующиеся в самих клетках эпителия: аммиак, гиппуровую кислоту, которые выделяются с мочой; ренин, простагландины, глюкозу почек, поступающие в кровь.
Таким образом, состав конечной мочи зависит от процессов фильтрации, реабсорбции и секреции.

Количество, состав и свойства мочи

За сутки человек выделяет в среднем около 1,5 л мочи. При обильном питье, потреблении белковой пищи диурез возрастает. При потреблении небольшого количества воды, при усиленном потоотделении диурез снижается. Интенсивность мочеобразования колеблется в течение суток: ночью мочеобразование меньше, чем днем.
Моча представляет собой прозрачную жидкость светло-желтого цвета с относительной плотностью 1005-1025, которая зависит от количества принятой жидкости.

Состав мочи:
вода — 95%;
твердые вещества — 5%;
мочевина — 2%;
мочевая кислота 0,05%;
креатинин 0,075%;
соли натрия и калия.

За сутки с мочой выводится 25-30 г. мочевины, 15-25 г. неорганических солей.

Реакция мочи здорового человека обычно слабо-кислая. Однако pH ее колеблется от 5,0 до 7,0 в зависимости от характера питания. Если человек использует в рационе преимущественно мясную, белковую пищу — реакция мочи слабо-кислая, нейтральная; если растительную пищу — реакция мочи нейтральная или слабо щелочная.

В моче здорового человека белок отсутствует или определяются его следы. Среди органических соединений небелкового происхождения в моче встречаются соли щавелевой кислоты, молочной кислоты, кетоновые тела.

Глюкозы в моче в обычных условиях быть не должно. Эритроциты появляются в моче (гематурия) при заболеваниях почек и мочевыводящих органов. В моче содержатся пигменты уробилин, урохром. которые определяют цвет мочи. С мочой выделяются электролиты: ионы натрия, калия, магния, хлора, кальция, сульфаты и др. В моче содержатся гормоны и их метаболиты, ферменты, витамины.

Выведение мочи

Образовавшаяся моча из собирательных трубочек поступает в почечные лоханки. По мере заполнения лоханки мочой до определенного предела, который контролируется барорецепторами, происходит рефлекторное сокращение мускулатуры лоханки, раскрытие мочеточника и поступление мочи в мочевой пузырь.

Поступающая в мочевой пузырь моча постепенно приводит к растяжению его стенок. При наполнении до 250 мл раздражаются механорецепторы мочевого пузыря и импульсы передаются по афферентным волокнам тазового нерва в крестцовый отдел спинного мозга, где расположен центр непроизвольного мочеиспускания.

Импульсы от центра по парасимпатическим волокнам достигают мочевого пузыря и мочеиспускательного канала и вызывают сокращение гладкой мышцы стенки мочевого пузыря и расслабление сфинктера пузыря и сфинктера мочеиспускательного канала, что приводит к опорожнению мочевого пузыря. Ведущим механизмом раздражения рецепторов мочевого пузыря является его растяжение, а не рост давления.

Важное значение имеет скорость наполнения мочевого пузыря. При быстром его наполнении импульсация резко увеличивается. Спинальный центр находится под регулирующим влиянием вышележащих отделов: кора больших полушарий и средний мозг тормозят его, а передние отделы варолиева моста и задний отдел гипоталамуса стимулируют. Устойчивый корковый контроль мочеиспускания развивается на втором году жизни.

Нейрогуморальная регуляция деятельности почек

Нервная регуляция

Нервная система регулирует:
— гемодинамику почки
— работу юкстагломерулярного аппарата
— фильтрацию
— реабсорбцию
— секрецию.

Раздражение симпатических нервов (являются преимущественно ветвями чревных нервов), иннервирующих почку, приводит к сужению ее кровеносных сосудов. При сужении приносящих артериол уменьшаются фильтрационное давление и фильтрация. Сужение выносящих артериол сопровождается повышением фильтрационного давления и ростом фильтрации.

Стимуляция симпатических эфферентных волокон приводит к увеличению реабсорбции натрия, воды. Раздражение парасимпатических волокон, идущих в составе блуждающих нервов, вызывает усиление реабсорбции глюкозы и секреции органических кислот.

При болевых раздражениях диурез рефлекторно уменьшается вплоть до полного прекращения (болевая анурия). Механизм этого явления заключается в сужении почечных сосудов в результате возбуждения симпатической нервной системы, усилении секреции катехоламинов надпочечниками и увеличении продукции антидиуретического гормона (вазопрессина).

Уменьшение и увеличение диуреза может быть вызвано условно- рефлекторным путем, что свидетельствует о выраженном влиянии высших отделов ЦНС на работу почек. ЦНС регулирует работу почек или непосредственно через вегетативные нервы, или через нейроны гипоталамуса, изменяя секрецию гормонов. В этом проявляется единство нервной ж гуморальной регуляции.

Гуморальная регуляция

Ведущую роль в регуляции деятельности почек принадлежит гуморальной системе. На работу ночек оказывают влияние многие гормоны, главными из которых являются антидиуретический гормон (АДГ) или вазопрессин, и альдостерон.

Антидиуретический гормон (АДГ) или вазопрессин способствует реабсорбции воды в дистальных отделах нефрона путем увеличения проницаемости для воды стенок дистальных извитых канальцев и собирательных трубочек.

Рисунок 8. Роль гипофиза и надпочечников в регуляции диуреза — процессы, происходящие под влиянием гормонов (по А.В. Коробкову, С.А. Чесноковой 1986).

Механизм действия АДГ заключается в активации фермента аденилатциклазы, который участвует в образовании цАМФ из АТФ. Кроме того, АДГ активирует фермент гиалуронидазу, которая деполимеризирует гиалуроновую кислоту межклеточного вещества, что обеспечивает пассивный межклеточный транспорт воды по осмотическому градиенту.

При избытке АДГ может наступить полное прекращение мочеобразования. Уменьшение секреции АДГ вызывает развитие несахарного диабета, при котором выделяется большое количество светлой мочи с незначительной относительной плотностью.

АДГ имеет важное значение в поддержании осмотического давления крови, волюморегуляции.

Рисунок 9. Участие юкстагломерулярного аппарата почек (ЮГА) в регуляции уровня артериального давления, УО — ударный объем; РААС — ренин-ангиотензин- альдостероновая система; ОЦК — объем циркулирующей крови (по Г.Е. Ройтберг, А.В. Струтынский, Лабораторная и инструментальная диагностика заболеваний внутренних органов, 1999)

Альдостерон увеличивает реабсорбцию ионов натрия и секрецию ионов калия и водорода клетками почечных канальцев. Одновременно возрастает реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами натрия, что приводит к уменьшению диуреза. Гормон уменьшает реабсорбцию кальция и магния в проксимальных отделах канальцев.

Натрийуретический гормон усиливает выведение ионов натрия с мочой.

Паратгормон стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к повышению концентрации ионов кальция в плазме крови и усилению выведения фосфатов с мочой. Кроме того, паратгормон угнетает реабсорбцию ионов натрия и НСОЗ в проксимальных канальцах и активирует реабсорбцию магния в восходящем колене петли Генле.

Кальцитонин тормозит реабсорбцию кальция и фосфата.

Адреналин в малых дозах суживает просвет выносящих артериол, в результате чего повышается гидростатическое давление, увеличиваются фильтрация и диурез. В больших дозах он вызывает сужение как выносящих, так и приносящих артериол, что приводит к уменьшению диуреза- вплоть до анурии.

Инсулин. Недостаток этого гормона приводит к гипергликемии, глюкозурин, увеличению осмотического давления мочи и увеличению диуреза.

Тироксин усиливает обменные процессы, в результате чего в моче возрастает количество осмотически активных веществ, в частности, азотистых, что приводит к увеличению диуреза.

Простагландины угнетают реабсорбцию натрия, стимулируют кровоток в мозговом веществе ночки, увеличивают диурез.

Соматотропин и андрогены увеличивают секрецию некоторых веществ, например, парааминогиппуровой кислоты,

Ренин-ангиотензин-альдостероновая система участвует в регуляции почечного и системного кровообращения, объема циркулирующей крови, электролитного баланса организма.

источник