Меню Рубрики

Обнаружение белка в моче пробой геллера

Кольцевая проба Геллера относится к качественным реакциям определения белка в моче. Так как она основана на реакции коагуляции, то исследуемая моча должна соответствовать определенным требованиям: быть прозрачной и иметь кислую реакцию.

Концентрированная (или 50%-я) азотная кислота или реактив Ларионовой. Приготовление реактива Ларионовой: готовят насыщенный раствор хлорида натрия (20 – 30 г соли растворяют в 100 мл воды при подогревании, дают отстояться до охлаждения). Надосадочную жидкость сливают, фильтруют. К 99 мл фильтрата добавляют 1 мл концентрированной азотной кислоты. Вместо азотной кислоты можно добавить 2 мл концентрированной соляной кислоты.

В пробирку наливают 1 – 1,5 мл азотной кислоты или реактива Ларионовой и пипеткой осторожно по стенке пробирки наслаивают такое же количество мочи, стараясь не взбалтывать жидкость в пробирке. При наличии белка на границе двух жидкостей появляется белое кольцо. Реакцию оценивают на черном фоне и учитывают время появления нитевидного кольца. Чувствительность пробы 0,033 г/л. При таком содержании белка на границе жидкостей появляется белое нитевидное кольцо между 2-й и 3-й минутами.

  • постановка пробы является достаточно трудоемкой и длительной процедурой, требующей концентрированной азотной кислоты;
  • иногда при постановке пробы появляется пигментное (коричневатое) кольцо от окисления урохрома азотной кислотой, которое может мешать определению белка;
  • в моче, содержащей ураты, иногда появляется беловатое кольцо выше границы жидкостей (уратное кольцо, в отличие от белкового, растворяется при легком нагревании);
  • проба выдает ложноположительные результаты при высокой концентрации мочевой кислоты, мочевины и т. д.

Более четкий результат пробы Геллера получается, если использовать реактив Ларионовой. Проба с реактивом Ларионовой имеет ряд преимуществ:

  • на границе наслоения не бывает пигментных колец, которые часто образуются при наслаивании мочи на азотную кислоту и мешают распознаванию белкового кольца;
  • кольца получаются более четкие, чем с азотной кислотой;
  • экономится азотная кислота;
  • реактив более удобен в работе: попадая на ткань, не прожигает ее.
  • Справочник по клиническим лабораторным методам исследования под ред. Е. А. Кост. Москва «Медицина» 1975 г.
  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • А. Я. Любина, Л. П. Ильичева и соавторы, «Клинические лабораторные исследования», Москва, «Медицина», 1984 г
  • А. В. Козлов, «Протеинурия: методы ее выявления», лекция, Санкт-Петербург, СПбМАПО, 2000 г.

Проба с 20% сульфосалициловой кислотой относится к качественным реакциям определения белка в моче. Так как она основана на реакции коагуляции, то исследуемая моча должна соответствовать определенным требованиям: быть прозрачной и иметь кислую реакцию.

Раздел: Анализ мочи

Метод Брандберга–Робертса–Стольникова относится к полуколичественным методам определения общего белка в моче. В основу метода положена кольцевая проба Геллера, заключающаяся в том, что на границе азотной кислоты и мочи при наличии белка происходит его коагуляция и появляется белое кольцо.

Раздел: Анализ мочи

Все качественные пробы на белок в моче основаны на способности белков к денатурации под влиянием различных физических и химических факторов. При наличии белка в исследуемом образце мочи появляется либо помутнение, либо выпадение хлопьевидного осадка.

Раздел: Анализ мочи

Неорганизованные осадки мочи состоят из различных солей, органических соединений и лекарственных веществ, осевших в моче в виде кристаллов или аморфных тел. Однако чаще неорганизованный осадок состоит преимущественно из солей.

Раздел: Анализ мочи

Принцип обнаружения кетоновых тел в моче. Нитропруссид натрия в щелочной среде реагирует с кетоновыми телами, образуя комплекс, окрашенный в розовато-сиреневый, сиреневый или фиолетовый цвет. Чувствительность проб около 50 мг/л кетоновых тел. Полуколичественную оценку результатов можно дать в интервале от 150 до 1500 мг/л.

Раздел: Анализ мочи

источник

В состав рабочего места по определению белка в моче входят следующие элементы:

  1. Пробирки химические, агглютинационные.
  2. Набор градуированных пипеток.
  3. Пипетки с узким оттянутым концом.
  4. Спиртовки или газовая горелка.
  5. Черная бумага.
  6. Ледяная уксусная кислота.
  7. Сульфосалициловая кислота.
  8. Концентрированная азотная кислота.
  9. Дистиллированная вода.

Все методики, применяющиеся для качественного определения белка в моче, основаны на свертывании белка. Свертывание белка проявляется выраженным в разной степени помутнением (от опалесценции до большой мутности) или выпадением хлопьев.

Качественное определение белка в моче может быть проведено одним из следующих способов:

  1. кипячением с 10% раствором уксусной кислоты;
  2. реакцией с 20% раствором сульфосалициловой кислоты;
  3. реакцией с 50% раствором азотной кислоты (проба Геллера);
  4. реакцией с 1% раствором азотной кислоты в насыщенном растворе поваренной соли (видоизмененная проба Геллера по Ларионовой).

Перед качественным определением белка в моче проводят следующую подготовительную работу:
1. Мутную мочу фильтруют через бумажный фильтр. Если получить прозрачный фильтрат не удается, производят повторное фильтрование через тот же фильтр или же смешивают мочу с небольшим количеством инфузорной земли или талька, после чего ее фильтруют.
2. Если моча имеет щелочную реакцию, ее подкисляют 10% раствором уксусной кислоты до слабокислой реакции под контролем лакмусовой или универсальной индикаторной бумажки.
3. При малом содержании солей (светло-желтая или бледно-желтая моча с малым удельным весом) к каждой
пробе добавляют несколько капель насыщенного раствора поваренной соли, так как недостаток солей обусловливает свертывание белка.
4. Степень помутнения наблюдают с помощью черного фона. В качестве фона используют черный картон или черную бумагу, применяемую в фотографии. Учет реакции на черном фоне позволяет выявить малейшую степень помутнения.

В отдельном штативе располагают пронумерованные пробирки. В них производят одну из описанных ниже реакций.

1. Проба кипячением с 10% раствором уксусной кислоты. Для постановки этой пробы необходим 10% раствор уксусной кислоты, который готовят следующим образом: 10 мл ледяной уксусной кислоты помещают в цилиндр и доливают дистиллированной водой до метки 100 мл.

Техника определения белка. В химическую пробирку помещают 10—12 мл отфильтрованной мочи слабокислой реакции. Затем верхнюю часть пробирки с мочой осторожно нагревают до кипения и добавляют в нее 8—10 капель 10% раствора уксусной кислоты. Пробирку с мочой рассматривают на черном фоне в проходящем свете. При наличии белка в моче появляется мутность разной степени (от опалесценции до большой мутности) или выпадают хлопья. Контролем служит нижняя часть пробирки, не подвергавшаяся нагреванию. Этой пробой обнаруживают количество белка, начиная с 0,015%о (%о — promille).

2. Реакция с 20% раствором сульфосалициловой кислоты. 20 % раствор сульфосалициловой кислоты готовят следующим образом: 20 г сульфосалициловой кислоты растворяют в 70-80 мл дистиллированной воды, переводят в цилиндр емкостью 100 мл и доливают дистиллированной водой до метки. Приготовленный реактив хранят в посуде из темного стекла.

Техника определения белка. В две пробирки одинакового диаметра помещают по 2—3 мл отфильтрованной мочи слабокислой реакции, в одну из пробирок к моче прибавляют 3—4 капли 20% раствора сульфосалициловой кислоты, другая пробирка служит контролем. При наличии белка в пробирке с реактивом появляется мутность или выпадают хлопья свернувшегося белка. В контрольной пробирке жидкость остается прозрачной. Сульфосалициловая кислота наряду с белком сыворотки осаждает альбумозы (пептиды), представляющие собой продукт распада белка. С целью уточнения причины помутнения мочи пробирку с мочой подогревают. Мутность, причиной образования которой оказались сывороточные белки, усиливается, мутность же, обусловленная присутствием альбумоз, исчезает. Эта проба имеет ту же чувствительность, что и предыдущая.

3. Реакция с 50 % раствором азотной кислоты (проба Геллера). 50% раствор азотной кислоты готовят следующим образом: к 50 мл азотной кислоты удельного веса 1,2-1,4 приливают 50 мл дистиллированной воды (разведение 1:1).

Техника определения белка. В узкую небольшую пробирку (тина агглютинационной) наливают 1 мл 50% азотной кислоты. В пипетку с узким оттянутым концом набирают 1 мл отфильтрованной исследуемой мочи, наслаивают на реактив и пробирку переводят в вертикальное положение. При наличии белка на границе жидкостей появляется белое кольцо. Время появления кольца, его свойства зависят от количества белка: если белка мало, то кольцо появляется не сразу, поэтому за его появлением следят в течение 2,5-3 минут. Минимальное количество белка, определяемое этим методом, 0,033°/оо. При меньшем содержании белка в моче кольцо не образуется. Учет результатов реакции производят на черном фоне в проходящем свете.

4. Реакция с 1% раствором азотной кислоты на насыщенном растворе поваренной соли — видоизмененная проба Геллера (по Ларионовой). Для проведения пробы используют 1 % раствор азотной кислоты, приготовленный на насыщенном растворе поваренной соли (реактив Ларионовой). 35 г поваренной соли растворяют в 100 мл дистиллированной поды, раствор фильтруют, к 1 мл концентрированной азотной кислоты удельного веса 1,2-1,4 приливают 99 мл приготовленного насыщенного раствора поваренной соли.

Техника определения белка такая же, как и при реакции с 50% раствором азотной кислоты (проба Геллера), но вместо 1 мл 50% раствора азотной кислоты в пробирку наливают 1 мл реактива Ларионовой и на него наслаивают 1 мл мочи. Появление белого кольца на границе жидкостей указывает на наличие белка в исследуемой моче. Проба по Ларионовой так же чувствительна, как и проба Геллера.

5. Колориметрическая (сухая) проба качественного определения белка. Колориметрическая (сухая) проба качественного определения белка в моче основана на воздействии, которое оказывает белок на цвет индикатора в буферном растворе.

Техника определения белка. Кусочек индикаторной бумаги, предназначенный для определения белка погружают в мочу на короткое время. Пробу считают положительной, если бумажка окрашивается в сине-зеленый цвет.

Количественное определение белка в моче основано на том, что при наслаивании мочи, содержащей белок, на 50% раствор азотной кислоты или реактив Ларионовой на границе двух жидкостей образуется белое кольцо, причем если четкое белое кольцо появляется к 3 минутам, то содержание белка равно 0,033%о или 33 мг в 1000 мл мочи. Появление кольца ранее 3 минут свидетельствует о большем содержании белка в моче.
При количественном определении белка в моче выполняют следующие правила:

  1. Количественное определение белка производят только в тех порциях мочи, где он был обнаружен качественно.
  2. Определение производят с тщательно отфильтрованной мочой.
  3. Точно соблюдают технику наслаивания исследуемой мочи на 50% раствор азотной кислоты или реактив Ларионовой в соотношении реактива с мочой (1:1).
  4. Время появления кольца определяют по секундомеру: при окончательном расчете количества белка учитывают время наслаивания мочи на азотную кислоту, которое равно 15 секундам.
  5. Разведение мочи производят исходя из свойства кольца. При этом каждое последующее разведение мочи готовят из предыдущего.
  6. Определение колец производят на черном фоне.

Наиболее распространены два метода количественно¬го определения белка в моче: метод Робертса — Стольникова — Брандберга и метод С. Л. Эрлиха и А. Я. Альтгаузена.

  1. Метод Робертса-Стольникова-Брандберга. По этому способу количество белка в моче определяют путем разведения ее до тех пор, пока при очередном наслаивании мочи на 50% раствор азотной кислоты или реактив Ларионовой кольцо появится точно к 3 минутам. Расчет количества белка производят, умножая 0,033%о на степень разведения мочи. Полученный результат выражает количество белка в миллиграммах на 1000 мл мочи, т. е. в promille (%о).
  2. Метод С. Л. Эрлиха и А. Я. Альтгаузена. В штатив помещают ряд агглютинационных пробирок, в которые предварительно наливают по 1 мл 50% раствора азотной кислоты или реактива Ларионовой. Исследуемую мочу берут отдельной чистой, сухой пипеткой с узким оттянутым концом и наслаивают на реактив, после чего включают секундомер. За временем появления кольца следят, располагая пробирку на черном фоне. При появлении кольца секундомер выключают.

При наслаивании мочи в зависимости от количества белка может появиться компактное, широкое или нитевидное кольцо. Компактное, широкое кольцо появляется тотчас же после наслаивания мочи на реактив. Нитевидное кольцо может появиться сразу, до истечения одной минуты, или в промежутке от одной до 4 минут.

При появлении нитевидного кольца в пределах от одной до 4 минут производить разведение мочи не нужно!
Для вычисления количества белка в этом случае достачно использовать предложенную авторами таблицу-план (табл. 1).

Пример 1. При наслаивании мочи на реактив нитевидное кольцо образовалось через 2 минуты. Если бы кольцо образовалось к 3 минутам, то количество белка было было бы равно 0,033%о.

В данном же случае кольцо образовалось раньше. Соответственная поправка, согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Это значит, что белка в данной порции мочи будет в 1+1/8 раза больше, чем 0,033°/оо, т. е. 0,033%о X(1+1/8) = 0,037°/оо.

При появлении нитевидного кольца до 1 минуты, т. е. через 40-60 секунд, производят одно разведение мочи в 1,5 раза (2 части мочи + 1 часть воды), а затем вновь наслаивают разведенную мочу на реактив и регистрируют появление кольца. При расчете результатов учитывают, что моча была разведена в 1,5 раза.

Пример 2. После наслаивания разведенной в 1,5 раза мочи нитевидное кольцо появилось к 2 минутам. Если бы кольцо появилось к 3 минутам, то белка было бы 0,033%. Соответственная поправка согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Белка в моче содержится 0,033%оX1,5X(1+1/8) = 0,056%о.

Если нитевидное кольцо появляется сразу, мочу разводят в 2 раза (1 часть мочи + 1 часть воды). Разведенную мочу вновь наслаивают на реактив и отмечают появление кольца по истечении 1 минуты.

Пример 3. При наслаивании разведенной в 2 раза мочи на реактив нитевидное кольцо появилось через 1 минуту 15 секунд. Тогда количество белка в исследуемой моче по аналогии с прежними расчетами будет равно
0,033%оХ2Х(1+3/8) = 0,091%.
В случае появления широкого кольца мочу разводят в 4 раза (1 часть мочи + 3 части воды).
При последующем наслаивании разведенной мочи нитевидное кольцо может образоваться как до, так и по истечении одной минуты. В таких случаях расчет количества белка производят по аналогии с предыдущими примерами, т. е. 0,033% о умножают на степень разведения и на соответственную поправку.

Пример 1. Кольцо после разведения мочи в 4 раза появилось сразу же. Мочу разводят в 2 раза. После наслаивания мочи, разведенной в 8 раз (4X2), нитевидное кольцо образовалось через 1,5 минуты. В таком случае количество белка равно 0,033%оХ8X1,25 = 0,33%о и т. д.
При появлении компактного кольца мочу разводят в 8 раз (1 часть мочи+ 7 частей воды). При последующем наслаивании разведенной мочи на реактив может образоваться либо компактное, либо широкое, либо нитевидное кольцо.

Пример 2. При наслаивании мочи на азотную кислоту тотчас же образовалось компактное кольцо. Мочу разводят в 8 раз (1 часть мочи + 7 частей воды) и вновь производят ее наслаивание. При этом опять получилось компактное кольцо. Тогда мочу разводят еще в 8 раз (для этого в цилиндр или в пробирку берут 1 часть разведенной мочи и прибавляют к ней 7 частей воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось сразу. Мочу разводят в 2 раза (1 часть мочи + 1 часть воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось к 2 минутам. Расчет количества белка данной порции мочи производят так: 0,033,%оX8X8X2X(1+1/8) = 4,8%о.

Помимо таблицы-плана, имеется таблица с рассчитанными цифрами белка (табл. 2). Если моча не разведена, то количество белка отыскивают в графе «Цельная неразведенная моча». При разведении мочи в целое число раз (8,4,2) используют табл. 1. При разведении мочи в 1,5 раза используют табл. 2.

В соответствующих графах таблицы наводят время появления кольца и степень разведения мочи.
Цифра, находящаяся в точке пересечения горизонтальной и вертикальной линий, проведенных от этих двух показателей, указывает на количество белка в исследуемой моче (%о).

Возможно, что при положительной качественной пробе на белок кольцо при наслаивании на 50% раствор азотной кислоты не образуется. Это значит, что в моче белка меньше 0,033%о. В таких случаях количество белка в бланке анализа обозначают термином «следы».

Если белок определен количественно, в бланке анализа мочи отмечают содержание белка в promille, например «белок — 0,66%о».

Помимо количественного определения белка в отдельной порции мочи, рассчитывают суточное его количество в граммах. С этой целью собирают суточную мочу, измеряют ее количество и определяют содержание белка в promille. Затем производят расчет. Например, суточное количество мочи равно 1800 мл, белок — 7°/оо. Значит, белка в суточном количестве мочи содержится: 1,8X7 = 12,6 г.

источник

Западно-Казахстанский Высший медицинский колледж. Сайт преподавателя МКЛИ Байбулатовой Светланы Андреевны

Химическое исследование мочи включает в себя определение белка, глюкозы, ацетона и ацетоуксусной кислоты, желчных пигментов и уробилиноидов и некоторых других ингредиентов.

Важным условием химического исследования мочи, особенно определения белка, является ее прозрачность.

Читайте также:  Моча помогает ли при порчи

Прежде чем приступить к исследованию, необходимо провести центрифугирование мочи: 10,0 мл. мочи вносят в центрифужную пробирку. Пробирку ставят в центрифугу. Включают прибор на 10 минут соблюдая все необходимые правила безопасной работы с центрифугой. Необходимо помнить, что центрифуга включается тогда, когда в приборе находится только чётное количество центрифужных пробирок.

В моче здорового человека белок не выявляется, поскольку те методы, которые используются обычно в клинике (проба с сульфосалициловой кислотой и биуретовая реакция) не позволяют обнаружить небольшие количества низкомолекулярных сывороточных протеинов (около 10–50 мг в сутки), которые и в норме проникают через неповрежденный почечный барьер.

Для обнаружения белка в моче (протеинурии) используют качественные и количественные методы, большинство из которых основаны на его свертывании или осаждении специальными реактивами.

Проба с сульфосалициловой кислотой.

В 2 пробирки наливают по 3–4 мл профильтрованной мочи.

В опытную пробирку добавляют 6–8 капель 20% раствора сульфосалициловой кислоты.

На темном фоне в проходящем свете сравнивают обе пробирки.

При наличии белка в зависимости от его количества образуется помутнение или выпадают хлопья свернувшегося белка (рис. 1, а).

Результаты обозначают следующим образом: реакция слабоположительная (+), положительная (++), резко положительная (+++).

Проба с азотной кислотой (кольцевая проба Геллера).

В пробирку наливают 1–2 мл 30% азотной кислоты или реактива Ларионовой (1% раствор азотной кислоты в насыщенном растворе натрия хлорида) и осторожно по стенке наслаивают сверху такое же количество мочи.

При наличии белка через 2–3 мин (или раньше) на границе двух сред (кислоты и мочи) образуется тонкое белое кольцо свернувшегося белка (рис. 1, б).

Проба становится положительной даже при минимальной концентрации белка в моче — 0,033 г/л (0,033 о /оо).

Следует, правда, помнить, что беловатое или красновато-фиолетовое кольцо при проведении этой пробы, располагающееся несколько выше границы между двумя жидкостями, может образовываться при наличии в моче большого количества уратов.

Однако уратное кольцо в отличие от белкового при легком нагревании растворяется.

Схема качественного определения белка в моче с помощью проб с сульфасалициловой кислотой (а) и азотной кислотой (б).

На рис. 1, б стрелкой показано белое кольцо преципитации белка

Метод разведения Брандберга-Робертса-Стольникова

Метод основан на количественной оценке результатов пробы с азотной кислотой (кольцевой пробы Геллера — см. выше).

Ход определения белка такой же, как и при этой качественной реакции.

Считается, что появление тонкого белого кольца на границе азотной кислоты и мочи (рис. 1, б) на 2–3-й минуте указывает на наличие белка в моче в концентрации 0,033 г/л.

Если кольцо появляется раньше 2 мин, мочу разводят в 2 раза и снова повторяют исследование.

Если и на этот раз кольцо появляется раньше 2 мин, мочу снова разводят в 2, 4, 8 и т. д. раз, пока тонкое белое кольцо не появится на 2–3-й минуте.

Искомую концентрацию белка в моче вычисяют, умножая 0,033 г/л на степень разведения.

Метод основан на возникновении помутнения мочи при коагуляции белка сульфосалициловой кислотой.

Интенсивность помутнения пропорциональна концентрации белка.

В градуированную пробирку вносят 1,25 мл профильтрованной мочи, добавляют до 5 мл 3% раствор сульфосалициловой кислоты и перемешивают.

Через 5 минут измеряют на фотоэлектроколориметре при длине волны 590–650 нм против контроля в кювете с толщиной слоя 0,5 см.

Метод основан на свойстве белка давать с сернокислой медью и едкой щелочью так называемый биуретовый комплекс фиолетового цвета.

Интенсивность окраски, количественно определяемая на фотоэлектроколориметре, пропорциональна концентрации белка.

Определение суточной протеинурии.

При заболеваниях почек, сопровождающихся протеинурией, уровень выделения белка с мочой в течение суток колеблется в широких пределах.

Поэтому в клинической практике выраженность протеинурии принято оценивать по суточной потере белка с мочой (суточной протеинурии).

В 8 ч утра пациент мочится в унитаз, после чего всю выделенную в течение суток (до 8 ч следующего дня) мочу собирают в отдельную емкость объемом 3 литра.

Затем измеряют общее количество мочи, тщательно размешивают ее и наливают в отдельную банку емкостью 150–200 мл.

В этой порции мочи определяют концентрацию белка по одному из методов, описанных выше.

Суточную протеинурию (в граммах) рассчитывают по формуле:

где Рс суточная протеинурия (в граммах); Р — концентрация белка в суточной моче (г/л); V — суточный диурез.

У здорового человека в разовой порции мочи при использовании перечисленных выше методов белок не определяется.

Выделение белка с мочой (протеинурия) имеет важное диагностическое значение.

Даже следы белка (0,033 г/л), обнаруженные в разовой порции мочи, требуют уточнения причин протеинурии.

1. преренальную протеинурию, обусловленную усилением распада белка тканей (опухоли, ожоги, массивный гемолиз эритроцитов и т. п.);

2. ренальную протеинурию, связанную с патологией почек;

3. постренальную протеинурию, вызванную патологией мочевыводящих путей, и чаще всего связанную с воспалительной экссудацией (заболевания мочевого пузыря, мочеиспускательного канала, половых органов).

В практическом отношении важно отличать ренальную и постренальную формы протеинурии.

Постренальная форма протеинурии сопровождается появлением в моче большого количества лейкоцитов или эритроцитов.

При ренальной форме протеинурии в моче обычно присутствуют цилиндры.

Почечная (ренальная) протеинурия обусловлена повышением проницаемости клубочкового фильтра и уменьшением реабсорбции профильтровавшегося белка в почечных канальцах.

Различают функциональную (физиологическую, доброкачественную) и патологическую (органическую) почечную протеинурию.

Функциональная почечная протеинурия

Функциональная почечная протеинурия обусловлена временным преходящим увеличением фильтрации белков сыворотки крови в ответ на сильные внешние раздражения (необычные статические и динамические нагрузки, повышенная мышечная работа, лихорадка, интоксикация) и не связана с поражением почек и мочевыводящих путей.

Функциональная протеинурия вызвана замедлением почечного кровообращения или преходящим нарушением проницаемости клубочковых капилляров в результате вторичного токсико-инфекционного поражения (О. Шюк).

Следует помнить о нескольких наиболее распространенных вариантах функциональной почечной протеинурии:

1. Ортостатическая (юношеская) протеинурия выявляется у здоровых молодых лиц астенического телосложения с лордозом поясничного отдела позвоночника.

Она появляется при длительном нахождении в вертикальном положении и исчезает в горизонтальном положении.

2. Рабочая (маршевая) протеинурия, появляющаяся после тяжелой физической нагрузки.

3. Лихорадочная протеинурия, возникающая при различных заболеваниях, сопровождающихся повышением температуры тела.

Такая протеинурия исчезает после нормализации температуры.

4. Алиментарная протеинурия (после обильной белковой пищи).

5. Пальпаторная протеинурия (после продолжительной пальпации почек).

6. Эмоциональная протеинурия — при значительном психоэмоциональном напряжении.

Функциональная почечная протеинурия, как правило, не превышает 1,0 г/л и исчезает после устранения причин, ее вызвавших.

Во всех случаях обнаружения белка в моче необходимо тщательное обследование больного для исключения органических заболеваний почек, сопровождающихся патологической протеинурией.

Патологическая почечная протеинурия является одним из наиболее важных признаков органического поражения клубочкового аппарата и почечных канальцев.

Наиболее частыми причинами патологической почечной протеинурии являются:

1. острый и хронический гломерулонефрит;

2. острый и хронический пиелонефрит;

4. застойная недостаточность крвообращения;

7. гипертоническая болезнь;

8. системные заболевания соединительной ткани с поражением почек;

9. геморрагический васкулит;

11. анафилактический шок и другие причины.

Особенно значительной протеинурия бывает при нефротическом синдроме.

При нефротическом синдроме концентрация белка в моче достигает 3–10 г/л.

У больных с заболеваниями почек протеинурия усиливается при:

1) выполнении физической нагрузки;

2) длительном нахождении в вертикальном положении;

Селективность протеинурии — это способность клубочкового фильтра пропускать молекулы белка плазмы в зависимости от его молекулярной массы.

При умеренном повреждении фильтрующей мембраны в моче преобладают низкомолекулярные белки (альбумины), тогда как белки с большой молекулярной массой (глобулины и др.) составляют небольшое количество. В этих случаях говорят о высокой селективности (избирательности) протеинурии.

Наоборот, при тяжелых поражениях почек селективность протеинурии снижается, и в моче появляются крупномолекулярные белки (например g-глобулины. В этих случаях качественный состав белков мочи приближается к белковому составу плазмы.

Таким образом, низкая селективность протеинурии свидетельствует о более тяжелом поражении клубочковых капилляров.

В моче здорового человека глюкоза отсутствует, за исключением тех редких случаев, когда преходящая, кратковременная и незначительная глюкозурия вызвана избыточным употреблением в пищу простых углеводов или внутривенным введением концентрированного раствора глюкозы.

Во всех остальных случаях глюкозурию следует расценивать как явление патологическое.

Патологическая глюкозурия может быть обусловлена:

1. превышением определенного критического уровня глюкозы в крови (примерно 8,8–9,9 ммоль/л) в связи с ограниченной способностью канальцев почек реабсорбировать глюкозу;

2. увеличением фильтрации глюкозы в клубочках почек вследствие их повреждения;

3. снижением реабсорбции глюкозы в проксимальных отделах почечных канальцев за счет первичного или вторичного их повреждения.

Глюкозурия может выявляться как при повышенном, так и при нормальном уровне глюкозы в крови.

Существуют качественные и количественные способы выявления (определения) глюкозы в моче.

Проба Гайнеса основана на способности глюкозы при нагревании в щелочной среде восстанавливать гидрат окиси меди (синего цвета) в гидрат закиси меди (желтого цвета) и закись меди (красного цвета).

Для проведения реакции в пробирку наливают 4 мл реактива Гайнеса (смесь растворов сернокислой меди, едкого натра и глицерина), добавляют к нему 8–12 капель мочи и нагревают верхнюю часть пробирки на пламени горелки до кипения (нижняя часть пробирки служит своеобразным контролем) (рис. 2).

При наличии в моче глюкозы в верхней части пробирки появляется желтая или красная окраска жидкости, а в нижней части — осадок коричнево-зеленоватого цвета.

Рисунок 2. Схема качественного определения глюкозы в моче (проба Гайнеса)

Определение глюкозы с помощью индикаторных полосок.

Метод основан на окислении глюкозы специфическим ферментом глюкозооксидазой с образованием перекиси водорода, которая в присутствии пероксидазы разлагается и окисляет специальный краситель.

Бумажные полоски, пропитанные глюкозооксидазой, пероксидазой и красителем опускают в пробирку с мочой, сразу вынимают и оставляют на 2 минуты на пластмассовой пластинке.

При наличии в моче глюкозы полоски окрашиваются в синий цвет, интенсивность которого соответствует концентрации глюкозы.

Сравнивая окраску с прилагаемой к набору стандартной цветовой шкалой можно ориентировочно определить содержание глюкозы в моче.

Глюкозооксидазный метод, принцип которого описан выше, дает более точные результаты определения концентрации глюкозы в моче.

В результате реакции образуется окрашенное вещество, интенсивность окраски колориметрируют и по калибровочной кривой, построенной на основании определений стандартных растворов глюкозы, рассчитывают ее содержание в моче.

Кетоновые тела (ацетон, ацетоуксусная и b-оксимасляная кислоты) являются промежуточными продуктами углеводного и жирового обмена. В норме, образуясь в небольшом количестве из ацетил-КоА, они почти полностью утилизируются в цикле трикарбоновых кислот (цикле Кребса).

При сахарном диабете и голодании усиливается утилизация жиров с образованием большого количества ацетил-КоА, который вследствие нарушений углеводного обмена не утилизируется и не используется в цикле трикарбоновых кислот.

В результате увеличивается содержание кетоновых тел, которые выделяются с мочой.

Кетоновые тела обладают выраженным токсическим действием на ЦНС .

Поэтому определение кетоновых тел в моче имеет важное диагностическое значение.

Проба основана на свойстве натрия нитропруссида реагировать в щелочной среде с кетоновыми телами с образованием комплексных соединений, окрашенных в красно-фиолетовый цвет.

В пробирку с 3–5 мл мочи добавляют 5–10 капель свежеприготовленного 10% раствора натрия нитропруссида и 0,5 мл концентрированной уксусной кислоты и смешивают их.

После этого осторожно по стенке пробирки наслаивают 2–3 мл 25% раствора аммиака.

Если в течение 3 минут на границе двух жидкостей получается красно-фиолетовое кольцо, пробу считают положительной (рис. 3).

Рисунок 3. Схема качественного определения кетоновых тел в моче (проба Ланге). Красной стрелкой показано красно-фиолетовое кольцо, появляющееся на границе мочи и раствора аммиака

Проба основана на том же принципе образования окрашенных соединений, что и проба Ланге.

В пробирке смешивают 200 мг сухого аммония сульфата, 5 капель мочи и 2 капли раствора натрия нитропруссида.

На эту смесь осторожно наслаивают 10–15 капель водного раствора аммиака.

Фиолетово-красное кольцо на границе двух сред свидетельствует о наличии в моче кетоновых тел.

Причем интенсивность окраски кольца пропорциональна концентрации кетоновых тел в моче.

В клинической практике получили распространение также различные модификации экспресс-анализа кетоновых тел в моче, например с помощью таблеток или полосок бумаги, содержащих все необходимые для реакции компоненты.

На таблетку наносят 2 капли мочи и через определенное время, указанное в инструкции, сравнивают интенсивность фиолетового окрашивания с цветной шкалой, соответствующей различной концентрации кетоновых тел в моче.

В норме методами, описанными выше, кетоновые тела не обнаруживаются.

Наиболее частыми причинами кетонурии являются:

1. диабетический кетоацидоз;

2. длительное голодание (так называемая кетонемическая гипогликемия);

4. несбалансированное безуглеводное питание (строгое ограничение углеводов при нормальном потреблении жиров);

5. состояния, связанные с повышенным метаболизмом (высокая лихорадка, тяжелый тиреотоксикоз и др.).

У здорового человека методами, используемыми в клинике, билирубин в моче не обнаруживается.

Появление билирубина в моче (билирубинурия) — всегда явление патологическое.

Оно связано с проникновением через почечный барьер связанного (прямого) билирубина (билирубин-глюкуронида).

Несвязанный (непрямой) билирубин не проходит через неповрежденный почечный фильтр, так как адсорбирован белком (альбумином).

В клинической практике широко применяются качественные пробы на билирубин.

Большинство из них основаны на его окислении йодом или азотной кислотой с образованием биливердина, окрашенного в зеленый цвет.

Йодная проба (проба Розина).

В качестве окислителя используется раствор Люголя или 1% спиртовой раствор йода. В пробирку с 3–4 мл мочи осторожно по стенке наслаивают 1–2 мл 1% спиртового раствора йода или раствора Люголя.

При наличии билирубина в моче на границе между двумя жидкостями образуется зеленое кольцо.

Билирубинурия выявляется при двух видах желтух (паренхиматозной и обтурационной).

Определение уробилина в моче

Уробилиновые тела (уробилиноиды) являются промежуточными продуктами пигментного обмена.

Они представлены, главным образом, уробилиногеном (мезобилиногеном) и стеркобилиногеном.

В норме уробилиноиды в моче представлены следами стеркобилиногена (около 4 -6 мг/с) и не обнаруживаются обычными качественными пробами.

Проба с сульфатом меди (проба Богомолова)

Проба основана на взаимодействии уробилина с сульфатом меди, что приводит к образованию соединений, окрашенных в красновато-розовый цвет.

К 10–15 мл мочи приливают 2–3 мл насыщенного раствора сульфата меди.

При помутнении раствора в него добавляют несколько капель концентрированной соляной кислоты, через 5 мин добавляют 2–3 мл хлороформа, закрывают пробирку и встряхивают ее.

Если хлороформ окрашивается в розовый цвет, то концентрация уробилина в моче превышает норму.

Чувствительная проба для выявления уробилиноидов.

При взаимодействии уробилина и соляной кислоты образуется соединение, окрашенное в красновато-розовый цвет.

К 10 мл мочи добавляют 3–4 капли концентрированной серной кислоты, смешивают, приливают 2–3 мл эфира и, плотно закрыв пробирку пробкой, осторожно смешивают, не взбалтывая.

В другую пробирку наливают 2 мл концентрированной соляной кислоты.

Пипеткой отсасывают из первой пробирки эфирную вытяжку и наслаивают ее на соляную кислоту.

На границе двух жидкостей при наличии уробилина образуется розовое кольцо, интенсивность окраски которого пропорциональна концентрации уробилина.

В норме описанными выше способами уробилин в моче не определяется, хотя иногда при проведении достаточно чувствительной пробы Флоренса на границе между двумя жидкостями можно заметить легкое розовое окрашивание.

Выделение уробилиноидов с мочой обнаруживают при следующих патологических заболеваниях и синдромах:

1. при паренхиматозной желтухе (преимущественно за счет мезобилиногена, не разрушающегося в печени);

2. при гемолитической желтухе (преимущественно за счет стеркобилиногена, в существенно большем количестве образующегося при усиленном распаде эритроцитов);

3. при заболеваниях кишечника, сопровождающихся усиленной реабсорбцией стеркобилиногена в кишечнике (энтероколиты, запоры, кишечная непроходимость).

источник

Нормальные показатели: белок в норме в моче содержится в минимальных количествах, которые не обнаруживаются обычными качественными реакциями. Верхняя граница нормы белка в моче – 0,033 г/л. Если содержание белка выше этого значения, то качественные пробы на белок становятся положительными.

Клиническое значение определения:

Появление белка в моче называется протеинурия. Протеинурии могут быть ложными и почечными. Экстраренальные протеинурии могут быть при наличии примесей белкового происхождения из половых органов (вагинитах, уретритах и др.), количество белка при этом незначительно – до 0,01 г/л. Почечные протеинурии могут быть функциональными (при переохлаждении, физических нагрузках, лихорадке) и органическими — при гломерулонефрите, пиелонефрите, нефрите, нефрозах, почечной недостаточности. При почечных протеинуриях содержание белка может быть от 0,033 до 10 – 15 г/л, иногда выше.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка.

Обнаружение белка в моче с 20% сульфосалициловой кислотой.

Реактивы: 20% р-р сульфосалициловой кислоты. Оборудование: темный фон.

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В 2 пробирки одинакового диаметра наливают по 2 мл подготовленной мочи. 1 пробирка – контроль, 2 – опыт. В опытную пробирку добавляют 4 капли 20% сульфосалициловой кислоты.

3. Результат отмечают на темном фоне.

4. При наличии белка, моча в опытной пробирке мутнеет.

Качественное определение белка в моче тест – полосками.

Для выявления протеинурий используют различные монотест – полоски: Альбуфан, Альбустикс, Биофан Е и политесты: Трискан, Нонафан и др.

Обнаружение белка в моче по методу Робертса – Стольникова.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка (т.е. кольцевая проба Геллера). При концентрации белка в моче 0,033 г/л к концу 3 минуты после наслаивания мочи появляется тонкое нитевидное белое кольцо.

Реактивы: 50% р-р азотной кислоты или реактив Робертса (98 частей насыщенного раствора поваренной соли и 2 части концентрированной соляной кислоты) или реактив Ларионовой (98 частей насыщенного р-ра поваренной соли и 2 части концентрированной азотной кислоты).

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В пробирку наливают 2 мл 50% р-ра азотной кислоты или один из реактивов, затем осторожно по стенке пробирки с помощью пипетки наслаивают такой же объем подготовленной мочи

3. Пробу оставляют на 3 минуты

4. Через 3 минуты отчитывают результат. Результат отмечают на темном фоне в проходящем свете. Если кольцо широкое, компактное, то мочу разводят дистиллированной водой и вновь наслаивают на реактив.

5. Мочу разводят до тех пор, пока через 3 минуты не образуется тонкое нитевидное кольцо.

6. Расчет содержания белка в моче производят по формуле:

С = 0,033г/л х степень разведения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10384 — | 7281 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Обнаружение белка в моче пробой Геллера.

Р-вы 50% азотная к-та, р-в ларионовой. Ход определения в пробирку 1-1,5 мл азотной к-ты или реактив ларионовой и по стенком наливают 1-1,5 мл мочи, при наличии белка появится белое кольцо, чувств пробы 0,033 г/л. Появление кольца через 2-3 минуты

2.Обнаружение белка в моче с 20% сульфосалициловой кислотой.

Р-в: р-р 20% сск: 20г сск растворяют в 70 мл дис воды и доливают до 100 мл. ход определения: в 2 пробирки налить 2-3 мл центрифугир мочи слабокислой реакции, в 1 пробирку налить 3-4 капли р-ра сск, во 2 в нее приливают 2 мл дис воды. при наличии белка в пробирке с реактивом появл мутность или выподают хлопья, контрольпробирки остается прозрачным. Минимал кол-во белка в этой пробе 0,015 г/л.

Определение концентрации белка в моче методом разведения.

Р-вы 50% р-р азотной к-ты или р-в ларионовой. Ход определения: в штатив ставят ряд пробирак и наливают по 1 мл р-ра азотной к-ты доб-ть 1 мл мочи наслаивают на реактив и засекают время, при появлении кольца записываем время появления кольца. Если кольцо широкое делают разведение мочи.

4.Определение концентрации белка в моче с 3% сульфосалициловой кислотой.

Р-вы: 3% сск, хлорид натрия 9%, ст р-р альбумина 10%.Ход определения: В две мерные центрифужные пробирки «О» – опыт и «К» — контроль помещают по 1,25мл прозрачной мочи. В опытную прибавляют 3,75мл 3% раствора сульфосалициловой кислоты, в контрольную 3,75мл 0,9% раст-вора хлорида натрия. Оставляют на 5 мин., а затем фотометрируют на ФЭКе при длине во-лны 590 – 650нм (оранжевый или красный светофильтр) в кювете с толщиной слоя 5мм опыт против контроля. Расчет ведут по калиб-ровочному графику ил таблице. Принцип метода основан на том, что белок с сульфосалици-ловой кислотой дает помутне-ние, интенсивность которого прямо пропорционально концентрации белка.

5.обнаружение глюкозы в моче проба Гайнеса-Акимова. Принцип: Глюкоза при нагревании в щелочной среде восстанавливает дигидроксид меди (желтого цвета) в моногидроксид меди (оранжево-красного цвета).Приготовление реактива: 1) 13,3 г хим. чистого кристаллического сульфата меди(СиSO4. 5 Н2О) раствор. в 400мл воды. 2) 50г едкого натра растворяют в 400мл воды. 3) 15г чистого глицерина разводят в 200мл воды. Смешивают первый и второй растворы и тотчас приливают третий. Реактив стоек. Ход определения: В пробирку вносят 1 каплю мочи и 9 капель реактива и кипятят на водяной бане 1-2 мин. Положительная проба: желтая или оранжевая окраска жидкости или осадка.

6. Качественное определение глюкозы в моче глюкооксидазным методом. Принцип метода: глюкоза окисляется в присутствии глюкозооксидазы, согласно реакции: Глюкоза + О2 гликонолантом + Н2О2.Образующаяся перекись Н под действием перексидазы окисляет субстрат с образованием окрашенного продукта.

Растворы Опыт Стандарт Контроль
Моча 0,02мл
Стандарт глюкозы 0,02мл
Дист.вода 0,02мл
Рабочий р-р. 2мл 2мл 2мл

Приливаем и инкубируем 15 минут при 37 0 С. Смотреть на КФК, кювета 5мм.

Затем производят расчёты по формуле: С оп = Ext оп. Cст/ Ect cт.

7.Обнаружение кетоновых тел в моче пробой Лестраде. На предметное стекло наносят (на кончике скальпеля) порошка или таблетку р-ра Лестраде, а на него 2-3 капли мочи. При наличии кетоновых тел появится окраска от розового до фиолетового. Пробу оценивают на белом фоне.

8.Обнаружение кровяного пигмента в моче пробой с 5 % спиртовым раствором амидопирина.

1.5% спиртовой р-р амидопирина(0,5 г амидопирина растворяют в 10 мл спирта 96%)2.3% р-р перекиси водорода 1,5 г гидропирита растворяют в 50 мл воды)Ход методики:в пробирку наливают 2-3 мл уксусно-эфирной вытяжки или взболтанной не фильтрованной мочи.добавляют 8-10 капель 5 % р-ра амидопирина и 8-10 капель 3% р-ра перекиси водорода;учитывают результат не позднее 2-3 мин.Проба считается положительной при наличии серо-фиолетового окрашивания.

Обнаружение уробилина в моче пробой Нейбауэра.

Основана на цветной реакции уробилиногена с реактивом Эрлиха,который сост.из 2 г парадиметиламинобенальдегида и 100 мл р-ра хлористоводородной к-ты(200 г.л).Ход определения.К нескольким мл свежевыделенной мочи приливают несколько капель р-ра Эрлиха(на 1 мл мочи и на 1 мл р-ра.Появление красного цв.в первые 30 с указывает на повыш.сод.уробилиногена.В норме окраска появляется позже или вообще отсут.При стоянии мочи уробилиноген превращается в уробилин и проба может быть ложноотрицательной.Пробу нельзя нагревать,т.к можно могут образоваться побочные комплексные соед,альдегида с порфиринами,индолом и лек.препаратами.

Обнаружение билирубина в моче пробой Розина.

Спиртовой р-р йода(10г.л):1 г кристаллического йода растворяют в цилиндре вместимостью 100 мл в 20-30 мл 96 гр.спирта-ректификата,а затем доб.доливают спиртом до метки.Ход определения.В хим.пробирку наливают 4-5 мл исследуемой мочи и осторожно наслаивают на нее спиртовой р-р йода(если моча имеет низкую относительную плотность,то следует наслаивать ее на спиртовой р-р йода).При наличии билирубина на границе между жидкостями обр.зелёное кольцо(при приёме антипирина,а также при сод.в моче кровяного пигмента проба оказывается положительной).У здорового человека эта проба отрицательна.

Исследование мочи методом сухой химии (моно- политестами).

Принцип. Метод основан на воздействии, оказываемом белком на цвет индикатора, находящегося в буферном растворе, в результате чего краситель изменяет цвет с желтого на синий.

При проведении реакции на присутствие белка в моче и определении pH с помощью индикаторной бумаги рекомендуется выполнить следующие указания:

  1. Собрать мочу в тщательно вымытую посуду.
  2. Использовать свежесобранную, не содержащую консервантов мочу.
  3. Тщательно закрыть пенал после извлечения из него необходимого количества индикаторных полосок бумаги.
  4. Не захватывать пальцами индикаторные зоны.
  5. Использовать только в пределах указанного на этикетке срока годности.
  6. Соблюдать правила хранения индикаторной бумаги.
  7. Проводить оценку результатов в соответствии с указаниями, имеющимеся в инструкции.

Выполнение анализа мочи на анализаторе сухой химии мочи.

Ход определения. Из пенала извлекают полоску индикаторной бумаги и погружают ее в исследуемую мочу так, чтобы одновременно смочить обе индикаторные зоны. Через 2-3 с полоску помещают на белую стеклянную пластинку. Немедленно проводят оценку pH, пользуясь цветной шкалой, нанесенной на пенале. Значение pH на цветной шкале соответствуют 6,0 (или меньше); 7,0; 8,0; 9,0.

Оценку содержания белка проводят через 60 с после смачивания полоски мочой, пользуясь цветной шкалой, нанесенной на пенале. Градациями цветной шкалы : 0 (отрицательная), 1 (следы), 2 (слабо положительная), 3 (положительная), 4 (резко положительная)- соответствуют концентрации белка : 0,1; 1; 3; 10 г/л.

Подготовка мочи, приготовление препаратов из осадка мочи микроскопического исследования ориентировочным способом.

Микроскопическое исследование осадка мочи проводят ориентировочным методом при общем анализе и количественным подсчетом форменных элементов для более точной оценки степени луйкоцитурии и гематурии.

Правила подготовки осадка мочи для микроскопирования.

Микроскопическому исследованию подлежит первая утренняя порция мочи.

После предварительного перемешивания берут 10 мл мочи, центрифугируют 10 мин при 1500 об/мин.

Затем центрифужную пробирку с мочой резким движением опрокидывают, быстро сливают надосадочную жидкость в пустую банку.

Перемешивают, каплю помещают на предметное стекло и осторожно прикрывают покровным.

Если осадок состоит из нескольких слоев, то готовят препарат, а затем вновь центрифугируют и готовят препараты из каждого слоя в отдельности.

При отсутствии видимого на глаз осадка каплю мочи наносят на предметное стекло и мокроскопируют.

В начале материал рассматривают при малом увеличении (окуляр 7-10, обьектив 8), конденсор при этом опускают, несколько суживают диафрагму, затем препарат детально изучают при большом увеличении (окуляр 10,7 ; обьектив 40).

На малом увеличении обнаруживают цилиндры, комплексы клеток, яйца паразитов, крупные кристалы. Розовый осадок бывает за счет уратов, эритроцитов. Белый осадок может быть в присутствии аморфных фосфатов, лейкоцитов. Элементы осадка делятся на организованные (эпителий, элементы крови, цилиндры) и неорганизованные (соли).

14.Количественное исследование осадка мочи по Нечипоренко.

Метод используется при скрытых вялотекущих воспалительных процессах (пиелонефрит, гломерулонефрит), скрытая пиурия. Для исследования патологического процесса в динамике. Для оценки эффективности проводимого лечения. Достоинства метода: технически прост, не требует большого кол-ва мочи и длитель. его хранения, применяется в амбулаторной практике. Обяз. условия: утренняя моча, средняя порция, кислая р-ция (в щелочной может быть частичный расспад клеточных элементов). 1. Перемешивают мочу.2.В мерную центрифужную пробирку помещают 10 мл мочи и центрифугируют 10 мин 1500 об/мин. 3. После центриф. отсасыв. Пипеткой верхнюю часть жидкости, оставл. ровно 1 мл осадка. 4.Осадок тщательно перемешивают и заполняют камеру Горяева. 5. Через 3-5 мин после заполн, приступают к подсчёту форменных элементов. 6.Подсчёт лейкоцитов,Er, цилиндров с окуляром 15 объективом 8 при опущ. конденсоре, в 100 больших квадратах камеры. Считают отдельно лейкоциты, Er, цилиндры (счит. не менее 4 камер Горяева) выводят сред. ариф. Х=А х 0,25х 10 6 /л. Норма: лейк. 2-4х 10 6 /л, Er до 1 х 10 6 /л, цилиндров до 0,02 х 10 6 /л (один на 4 камеры). У детей: лейк. до 2-4х 10 6 /л, Er до 0,75 х 10 6 /л, цилиндров до 0,02 х 10 6 /л.

15. Исследование мочи по Зимницкому

Этой пробой устанавливают способность почек концентр. и разводить мочу. Сущность пробы закл. в динамическом определении относительной плотности и кол-ва мочи в трёхчасыв порциях в течение суток. Проведение пробы: после опорожнения мочевого пузыря в 6 часов утра в унитаз, пациент через каждые три часа собирает мочу в отдельные банки в течение суток. Всего 8 порций. Ход исслед.: 1. Доставл. Мочу расставляют по часам и в каждой порции определяют кол-во и относительную плотность. 2. Сравнивают суточное кол-во мочи и кол-во выпитой жидкости, чтобы опред. % её выведения. 3. Вычисляют дневной и ночной диурез, суммируют, получают суточный диурез. 4. Устанавливают диапазон колебаний кол-ва и относительн. плотности мочи за сутки т.е. какова разница между самой малой порцией и большой. Показ. пробы у здор. людей: 1. Суточный диурез 800-1500 мл. 2. Дневной диурез значительно преобладает над ночным. 3.Колебания объёма мочи в отдельных порциях значительные (от 50 до 400 мл). 4. Колебания р от 1,003 до 1,028, должно быть более 0,008. При функ. недостаточности почек: гипостенурия, гипоизостенурия, изостенурия, гиперстенурия, олигурия, анурия, никтурия.

16. Описание общих свойств кала.

В норме кал состоит из продуктов секреции и экскреции пищеварит тракта, остатков неперевар или частично перевар пищевых продуктов, микробной флоры. Количество кала 100-150 г. Консистенция-плотная. Форма-цилиндрическая. Запах-каловый обычный. Цвет-коричневый. Р-ция- нейтральная, слабощелочная или слабокислая (рН 6,5-7,0-7,5). Слизь-отсутствует. Кровь-отсутствует. Остатки непереваренной пищи-отсутствует.

Определение СОЭ.

Водный р-р цитрата натрия 5%, объём крови 1:4. Набирают целый капилляр крови и смешивают с цитратом натрия(25 делений). Ставят в аппарат Панчекова на 1 час. Норма муж. 2-10 мм/ч, жен. 2-15 мм/ч. Ускоренная СОЭ-инф. воспал. процессы, лейкозы, злокачеств. новообразования. Замедление СОЭ-увеличение содержания альбуминов, желчных кислот.

Фиксация мазков крови.

Предохраняет форменные элементы крови от воздействия содержащейся в красках воды, под влиянием которой в нефиксированных препаратов происходит гемолиз эритроцитов и изменяется морфология лейкоцитов. Фиксатор также вызывает коагуляцию белков и закрепляет мазок на стекле. Фиксаторы: метиловый спирт (3-5 мин), р-р эозинметиленового синего по Май-Грюнвальду, этиловый спирт 960 (30 мин), хлороформ (несколько секунд), формалин (1 мин), смесь Никифорова (20 мин). Фиксацию проводят в специальных контейнерах, опускаяиз в кювету с фиксаором.

Обнаружение белка в моче пробой Геллера.

Р-вы 50% азотная к-та, р-в ларионовой. Ход определения в пробирку 1-1,5 мл азотной к-ты или реактив ларионовой и по стенком наливают 1-1,5 мл мочи, при наличии белка появится белое кольцо, чувств пробы 0,033 г/л. Появление кольца через 2-3 минуты

2.Обнаружение белка в моче с 20% сульфосалициловой кислотой.

Р-в: р-р 20% сск: 20г сск растворяют в 70 мл дис воды и доливают до 100 мл. ход определения: в 2 пробирки налить 2-3 мл центрифугир мочи слабокислой реакции, в 1 пробирку налить 3-4 капли р-ра сск, во 2 в нее приливают 2 мл дис воды. при наличии белка в пробирке с реактивом появл мутность или выподают хлопья, контрольпробирки остается прозрачным. Минимал кол-во белка в этой пробе 0,015 г/л.

источник

Почечная (истинная) протеинурия бывает функциональной и органической. Среди функциональной почечной протеинурии наиболее часто наблюдаются следующие ее виды:

— физиологическая протеинурия новорожденных, которая исчезает на 4— 10-й день после рождения, а у недоношенных несколько позже;
— ортостатическая альбуминурия, которая характерна для детей в возрасте 7—18 лет и появляется только в вертикальном положении тела;
— транзиторная (инсультная) альбуминурия, причиной которой могут быть различные заболевания органов пищеварения, тяжелая анемия, ожоги, травмы или физиологические факторы: тяжелая физическая нагрузка, переохлаждение, сильные эмоции, обильная, богатая белком пища и др.

Органическая (почечная) протеинурия наблюдается вследствие прохождения белка из крови через поврежденные участки эндотелия почечных клубочков при заболеваниях почек (гломерулонефрит, нефроз, нефросклероз, амилоидоз, нефропатия беременных), расстройствах почечной гемодинамики (почечная венная гипертензия, гипоксия), трофических и токсических (в том числе лекарственных) воздействиях на стенки капилляров клубочков.

Большинство качественных и количественных методов определения белка в моче основаны на его коагуляции в объеме мочи или на границе сред (мочи и кислоты).

Среди качественных методов определения бедка в моче наибольшее распространение получили унифицированная проба с сульфосалициловой кислотой и кольцевая проба Геллера.

Унифицированная проба с сульфасалициловой кислотой проводится следующим образом. В 2 пробирки наливают по 3 мл профильтрованной мочи. В одну из них прибавляют 6—8 капель 20 % раствора сульфасалициловой кислоты. На темном фоне сравнивают обе пробирки. Помутнение мочи в пробирке с сульфасалициловой кислотой указывает на наличие белка. Перед исследованием необходимо определить реакцию мочи, и если она щелочная, то подкислить 2—3 каплями 10 % раствора уксусной кислоты.

Проба Геллера основана на том, что при наличии белка в моче на границе азотной кислоты и мочи происходит его коагуляция и появляется белое кольцо. В пробирку наливают 1—2 мл 30 % раствора азотной кислоты и осторожно по стенке пробирки наслаивают точно такое же количество профильтрованной мочи. Появление белого кольца на границе двух жидкостей указывает на наличие белка в моче. Следует помнить, что иногда белое кольцо образуется при наличии большого количества уратов, но в отличие от белкового кольца оно появляется несколько выше границы между двумя жидкостями и растворяется при нагревании [Плетнева Н.Г., 1987].

Из количественных методов наиболее часто применяются:

1) унифицированный метод Брандберга—Робертса—Стольникова, в основу которого положена кольцевая проба Геллера;
2) фотоэлектроколориметрический метод количественного определения белка в моче по помутнению, образующемуся при добавлении сульфасалициловой кислоты;
3) биуретовый метод.

Выявление белка в моче упрощенным ускоренным методом проводят колориметрическим методом с помощью индикаторной бумаги, которую выпускают фирмы «Lachema» (Словакия), «Albuphan», «Ames» (Англия), «Albustix», «Boehringer» (Германия), «Comburtest» и др. Метод заключается в погружении в мочу специальной бумажной полоски, пропитанной тетрабромфеноловым синим и цитратным буфером, которая меняет свой цвет от желтого до синего в зависимости от содержания белка в моче. Ориентировочно концентрацию белка в исследуемой моче определяют с помощью стандартной шкалы. Для получения правильных результатов необходимо соблюдать следующие условия. рН мочи должна быть в пределах 3,0—3,5; при слишком щелочной моче (рН 6,5) будет получен ложноположительный результат, а при слишком кислой моче (рН 3,0) — ложноотрицательный.

Бумага должна находиться в контакте с исследуемой мочой не дольше, чем указано в инструкции, в противном случае тест даст ложноположительную реакцию. Последнюю также наблюдают и при содержании в моче большого количества слизи. Чувствительность различных видов и серий бумаги может быть различной, поэтому к количественной оценке белка в моче этим методом следует относиться осторожно. Определение его количества в суточной моче при помощи индикаторной бумаги невозможно [Плетнева Н.Г., 1987]

Существует несколько способов определения количества белка, выделившегося с мочой за сутки. Наиболее простым является метод Брандберга —Робертса—Стольникова.

Методика. 5-10 мл тщательно перемешанной суточной мочи наливают в пробирку и осторожно по стенкам ее добавляют 30 % раствор азотной кислоты. При наличии белка в моче в количестве 0,033 % (т.е. 33 мг на 1 л мочи) через 2-3 мин появляется тонкое, но четко видимое белое кольцо. При меньшей его концентрации проба отрицательная. При большем содержании белка в моче его количество определяют путем многократных разведений мочи дистиллированной водой до тех пор, пока не перестанет образовываться кольцо. В последней пробирке, в которой еще видно кольцо, концентрация белка будет составлять 0,033 %. Умножив 0,033 на степень разведения мочи, определяют содержание белка в 1 л неразведенной мочи в граммах. Затем рассчитывают содержание белка в суточной моче по формуле:

где К — количество белка в суточной моче (г); х — количество белка в 1 л мочи (г); V — количество мочи, выделенное за сутки (мл).

В норме в течение суток с мочой выделяется от 27 до 150 мг (в среднем 40—80 мг) белка.

Указанная проба позволяет определить в моче только мелкодисперсные белки (альбумины). Более точные количественные методы (колориметрический метод Кьельдаля и др.) довольно сложны и требуют специальной аппаратуры.

При почечной протеинурии с мочой выделяются не только альбумины, но и другие виды белка. Нормальная протеинограмма (по Зейцу и соавт., 1953) имеет следующее процентное содержание: альбуминов — 20 %, α1-глобулинов — 12 %, α2-глобулинов — 17 %, γ-глобулинов — 43 % и β-глобулинов — 8 %. Отношение альбуминов к глобулинам изменяется при различных заболеваниях почек, т.е. нарушается количественное соотношение между белковыми фракциями.

Наиболее распространенными методами фракционирования уропротеинов являются следующие: высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические методы (реакция радиальной иммунодиффузии по Манчини, иммуноэлектрофоретический анализ, преципитационный иммуноэлектрофорез), хроматография, гель-фильтрация, а также ультрацентрифугирование.

В связи с внедрением методов фракционирования уропротеинов, основанных на изучении электрофоретической подвижности, вариабильности молекулярной массы, размеров и формы молекул уропротеинов, появилась возможность выделять характерные для того или иного заболевания типы протеинурии, изучать клиренсы индивидуальных плазменных белков. К настоящему времени в моче идентифицировано свыше 40 плазменных белков, В том числе в нормальной моче 31 плазменный белок [Berggard, 1970].

В последние годы появилось понятие селективности протеинурии. В 1955 г. Hardwicke и Squire сформулировали понятие «селективная» и «неселективная» протеинурия, определив, что фильтрация плазменных белков в мочу подчиняется определенной закономерности: чем больше молекулярная масса белка, экскретируемого в мочу, тем меньше его клиренс и тем ниже концентрация его в окончательной моче. Протеинурия, соответствующая этой закономерности, является селективной в отличие от неселективной, для которой характерным является извращение выведенной закономерности.

Обнаружение в моче белков с относительно большой молекулярной массой свидетельствует об отсутствии избирательности почечного фильтра и выраженном его поражении. В этих случаях говорят о низкой селективности протеинурии. Поэтому в настоящее время широкое распространение получило определение белковых фракций мочи с использованием методов электрофореза в крахмальном и полиакриламидном геле. По результатам этих методов исследования можно судить о селективности протеинурии.

По данным В.С.Махлиной (1975), наиболее оправданным является определение селективности протеинурии путем сравнения клиренсов 6—7 индивидуальных белков плазмы крови (альбумина, транеферрина, α2 — макроглобулина, IgA, IgG, IgM) с использованием точных и специфичных количественных иммунологических методов реакции радиальной иммунодиффузии по Манчини, иммуноэлектрофоретического анализа и преципитального иммуноэлектрофореза. Степень селективности протеинурии определяют по индексу селективности, представляющего собой отношение сравниваемого и эталонного белков (альбумина).

Изучение клиренсов индивидуальных плазменных белков позволяет получить достоверные сведения о состоянии фильтрационных базальных мембран клубочков почки. Связь между характером экскретируемых в мочу белков и изменениями базальных мембран клубочков настолько выражена и постоянна, что по уропротеинограмме можно косвенно судить о патофизиологических изменениях в клубочках почек. В норме средний размер пор гломерулярной базальной мембраны составляет 2,9—4 А° НМ, которые могут пропускать белки, имеющие молекулярную массу до 10 4 (миоглобулин, кислый α1 — гликопротеин, легкие цепи иммуноглобулинов, Fc и Fab — фрагменты IgG, альбумин и трансферрин).

При гломерулонефрите, нефротическом синдроме размеры пор в базальных мембранах клубочков увеличиваются, в связи с чем базальная мембрана становится проницаемой для белковых молекул большого размера и массы (церулоплазмин, гаптоглобин, IgG, IgA и др.). При крайней степени повреждения клубочков почек в моче появляются гигантские молекулы белков плазмы крови (α2-макроглобулин, IgM и β2-липопротеин).

Определяя белковый спектр мочи, можно сделать заключение о преимущественном поражении тех или иных участков нефрона. Для гломерулонефрита с преимущественным поражением гломерулярных базальных мембран характерно наличие в моче крупно- и среднемолекулярных белков. Для пиелонефрита с преимущественным поражением базальных мембран канальцев характерны отсутствие крупномолекулярных и наличие повышенных количеств средне- и низкомолекулярных белков.

Концентрацию этого белка в плазме крови и моче определяют радиоиммунологическим методом с помощью стандартного набора «Phade-bas β2-mikroiest» (фирма «Pharmaсia», Швеция). В сыворотке крови здоровых людей содержится в среднем 1,7 мг/л (колебания от 0,6 до 3 мг/л), в моче — в среднем 81 мкг/л (максимально 250 мкг/л) β2-микроглобулина. Превышение его в моче свыше 1000 мкг/л — явление патологическое. Содержание β2-микроглобулина в крови увеличивается при заболеваниях, сопровождающихся нарушением клубочковой фильтрации, в частности при остром и хроническом гломерулонефрите, поликистозе почек, нефросклерозе, диабетической нефропатии, острой почечной недостаточности.

Концентрация β2-микроглобулина в моче повышается при заболеваниях, сопровождающихся нарушением реабсорбционной функции канальцев, что приводит к увеличению экскреции его с мочой в 10—50 раз, в частности, при пиелонефрите, ХПН, гнойной интоксикации и др. Характерно, что при цистите в отличие от пиелонефрита не наблюдается увеличения концентрации β2-микроглобулина в моче, что может быть использовано для дифференциальной диагностики этих заболеваний. Однако при интерпретации результатов исследования надо учитывать, что любое повышение температуры всегда сопровождается увеличением экскреции β2-микроглобулина с мочой.

Средние молекулы (СМ), иначе называемые белковыми токсинами, представляют собой вещества с молекулярной массой 500—5000 дальтон. Физическая структура их неизвестна. В состав СМ входят по меньшей мере 30 пептидов: окситоцин, вазопрессин, ангиотензин, глюкагон, адренокортикотропный гормон (АКТГ) и др. Избыточное накопление СМ наблюдается при снижении функции почек и содержании в крови большого количества деформированных белков и их метаболитов. Они обладают разнообразным биологическим действием и нейротоксичны, вызывают вторичную иммунодепрессию, вторичную анемию, угнетают биосинтез белка и эритропоэз, тормозят активность многих ферментов, нарушают течение фаз воспалительного процесса.

Уровень СМ в крови и моче определяют скрининговым тестом, а также путем спектрофотометрии в ультрафиолетовой зоне по длине волны 254 и 280 мм на спектрофотометре ДИ-8Б, а также динамической спектрофотометрии с компьютерной обработкой в диапазоне волн 220—335 нм на том же спектрометре фирмы Beckman. За норму принимают содержание СМ в крови, равное 0,24 ± 0,02 усл. ед., а в моче — 0,312 ± 0,09 усл. ед.
Будучи нормальными продуктами жизнедеятельности организма, они удаляются из него в норме ночками путем гломерулярной фильтрации на 0,5 %; 5 % их утилизируется другим путем. Все фракции СМ подвергаются канальцевой реабсорбции.

Кроме белков плазмы крови, в моче могут быть неплазменные (тканевые) протеины. По данным Buxbaum и Franklin (1970), неплазменные белки составляют приблизительно 2/3 всех биоколлоидов мочи и значительную часть уропротеинов при патологической протеинурии. Тканевые белки попадают в мочу непосредственно из почек или органов, анатомически связанных с мочевыми путями, или попадают из других органов и тканей в кровь, а из нее через базальные мембраны клубочков почки — в мочу. В последнем случае экскреция в мочу тканевых протеинов происходит аналогично выведению плазменных белков различной молекулярной массы. Состав неплазменных уропротеинов чрезвычайно разнообразен. Среди них гликопротеины, гормоны, антигены, ферменты (энзимы).

Тканевые протеины в моче выявляют с помощью обычных методов белковой химии (ультрацентрифугирование, гель-хроматография, различные варианты электрофореза), специфических реакций на ферменты и гормоны и иммунологических методов. Последние позволяют также определить концентрацию неплазменного уропротеина в моче и в ряде случаев определить тканевые структуры, ставшие источником его появления. Основным методом выявления в моче неплазменного белка является иммунодиффузионный анализ с антисывороткой, полученной иммунизацией экспериментальных животных мочой человека и истощенной (адсорбированной) в последующем белками плазмы крови.

При патологическом процессе наблюдаются глубокие нарушения жизнедеятельности клеток, сопровождающиеся выходом внутриклеточных ферментов в жидкостные среды организма. Энзимодиагностика базируется на определении ряда ферментов, выделившихся из клеток пораженных органов и не свойственных сыворотке крови.
Исследования нефрона человека и животных показали, что в отдельных его частях имеется высокая ферментативная дифференциация, тесно связанная с функциями, которые выполняет каждый отдел. В клубочках почки содержится относительно небольшое количество различных энзимов.

Клетки почечных канальцев, особенно проксимальных отделов, содержат максимальное количество энзимов. Высокая их активность наблюдается в петле Генле, прямых канальцах и собирательных трубочках. Изменения активности отдельных энзимов при различных заболеваниях почек зависят от характера, остроты и локализации процесса. Они наблюдаются до появления морфологических изменений в почках. Поскольку содержание различных ферментов четко локализовано в нефроне, определение того или иного фермента в моче может способствовать топической диагностике патологического процесса в почках (клубочки, канальцы, корковый или мозговой слой), дифференциальной диагностике почечных заболеваний и определению динамики (затухание и обострение) процесса в почечной паренхиме.

Дли дифференциальной диагностики заболеваний органов мочеполовой системы применяют определение активности в крови и моче следующих ферментов: лактатдегидрогеназы (ЛДГ), лейцинаминопептидазы (ЛАП), кислой фосфатазы (КФ), щелочной фосфатазы (ЩФ), β-глюкуронидазы, глютамино-щавелевоуксусной трансаминазы (ГЩТ), альдолазы, трансамидиназы и др. Активность ферментов в сыворотке крови и в моче определяют с помощью биохимических, спектрофотометрических, хроматографических, флуориметрических и хемилюминесцентных методов.

Энзимурия при заболеваниях почек более выражена и закономерна, чем энзимемия. Она особенно сильно выражена в острой стадии заболевания (острый пиелонефрит, травма, распад опухоли, инфаркт почки и т.д.). При этих заболеваниях обнаруживается высокая активность трансамидиназы, ЛДГ, ЩФ и КФ, гиалуронидазы, ЛАП, а также таких неспецифических энзимов, как ГЩТ, каталаза [Полянцева Л.Р., 1972].

Селективная локализация ферментов в нефроне при обнаружении ЛАП и ЩФ в моче позволяет с уверенностью говорить об острых и хронических заболеваниях почек (острая почечная недостаточность, некроз почечных канальцев, хронический гломерулонефрит) [Шеметов В.Д., 1968]. По данным А.А.Карелина и Л.Р.Полянцевой (1965), трансамидиназа содержится лишь в двух органах — почке и поджелудочной железе. Она является митохондриальным ферментом почек и в норме в крови и моче отсутствует. При различных заболеваниях почек трансамидиназа появляется в крови и в моче, а при поражении поджелудочной железы — только в крови.

Дифференциальным тестом в диагностике гломерулонефрита и пиелонефрита Krotkiewski (1963) считает активность ЩФ в моче, повышение которой более характерно для пиелонефрита и диабетического гломерулосклероза, чем для острого и хронического нефрита. Нарастающая в динамике амилаземия при одновременном снижении амилазурии может указывать на нефросклероз и сморщивание почки, ЛАП имеет наибольшее значение при патологических изменениях в клубочках и извитых канальцах почки, поскольку содержание ее в этих отделах нефрона более высокое [Шепотиновский В.П. и др., 1980]. Для диагностики волчаночного нефрита рекомендуется определение β-глюкуронидазы и КФ [Приваленко М.Н. и др., 1974].

При оценке роли энзимурии в диагностике заболеваний почек следует учитывать следующие положения. Энзимы, будучи по своей природе белками, при малой молекулярной массе могут проходить через неповрежденные клубочки, определяя так называемую физиологическую энзимурию. Среди этих энзимов постоянно определяются в моче α-амилаза (относительная молекулярная масса 45 ООО) и уропепсин (относительная молекулярная масса 38000).

Наряду с низкомолекулярными энзимами в моче здоровых лиц могут быть обнаружены в небольшой концентрации и другие энзимы: ЛДГ, аспартат- и аланинаминотрансферазы, ЩФ и КФ, мальтаза, альдолаза, липаза, различные протеазы и пептидазы, сульфатаза, каталаза, рибонуклеаза, пероксидаза [King, Воусе, 1963].

Высокомолекулярные энзимы с относительной молекулярной массой больше 70000-100000, по мнению Richterich (1958) и Hess (1962), могут проникать в мочу лишь при нарушении проницаемости клубочкового фильтра. Нормальное содержание ферментов в моче не позволяет исключить патологический процесс в почке при окклюзии мочеточника. При эпзимурии возможен выход энзимов не только из самих почек, но и из других паренхиматозных органов, клеток слизистых оболочек мочевых путей, предстательной железы, а также форменных элементов мочи при гематурии или лейкоцитурии.

Большинство энзимов неспецифично по отношению к почке, поэтому откуда происходят энзимы, обнаруженные в моче здоровых и больных, установить трудно. Однако степень энзимурии даже дли неспецифичных энзимов при поражении почек бывает выше нормы или той, которая наблюдается при заболеваниях других органов. Более ценную информацию может дать комплексное исследование в динамике ряда ферментов, особенно органоспецифичных, таких как трансаминаза.

В решении вопроса о почечном происхождении энзима в моче помогает исследование изоэнзимов с выявлением фракций, типичных для изучаемого органа. Изоэнзимы — это энзимы, изогенные по действию (катализируют одну и ту же реакцию), но гетерогенные по химической структуре и другим свойствам. Каждая ткань имеет характерный для нее изоэнзимный спектр. Ценными методами разделения изоэнзимов являются электрофорез в крахмальном и полиакриламидном геле, а также ионообменная хроматография.

При миеломной болезни и макроглобулинемии Вальденстрема в моче обнаруживают белок Бенс-Джонса. Метод обнаружения названного белка в моче основан на реакции термопреципитации. Применявшиеся ранее методы, с помощью которых оценивают растворение этого белка при температуре 100 °С и повторное осаждение при последующем охлаждении, ненадежны, так как не все белковые тела Бенс-Джонса обладают соответствующими свойствами.

Более достоверно выявление этого парапротеина путем осаждения его при температуре 40 -60 °С. Однако и в этих условиях осаждения может не произойти в слишком кислой (рН 6,5) моче, при низкой ОПМ и низкой концентрации белка Бенс-Джонса. Наиболее благоприятные условия для его осаждения обеспечивает методика, предложенная Patnem: 4 мл профильтрованной мочи смешивают с 1 мл 2 М ацетатного буфера рН 4,9 и согревают 15 мин на водяной бане при температуре 56 °С. При наличии белка Бенс-Джонса в течение первых 2 мин появляется выраженный осадок.

При концентрации белка Бенс-Джонса меньше 3 г/л проба может быть отрицательной, но на практике это встречается крайне редко, поскольку его концентрация в моче, как правило, более значительна. На пробы с кипячением нельзя вполне полагаться. С полной достоверностью он может быть обнаружен в моче иммуно-электрофоретическим методом с использованием специфических сывороток против тяжелых и легких цепей иммуноглобулинов.

источник

Похожие статьи:

Если в моче комки крови
Почему при гепатите моча темная а кал светлый
Нитроксолин может с него быть недержание мочи
Мутная слизь в моче у мужчины
Периодическое появление эритроцитов в моче
Среднесуточный белок в моче при беременности
Что означает повышенные эритроциты в моче у женщин
Болит в правом боку моча оранжевого цвета