Меню Рубрики

Первичная моча образуется в результате реабсорбции фильтрации секреции

Почки человека представляют собой парный орган бобовидной формы, расположенный забрюшинно, в поясничной области. Являясь жизненно важным органом, почки человека выполняют ряд физиологических функций, направленных в основном на поддержание постоянства внутренней среды (гомеостаза) организма. Основные гомеостатические почечные механизмы можно представить следующим образом:

  • Поддержание в организме постоянного объёма жидкости (изоволемия), осмотического давления внеклеточной жидкости (изоосмия), электролитного состава внутренней среды организма (изоиония), онкотического давления плазмы крови (изоонкия) и значения рН (изогидрия).
  • Выведение из плазмы крови конечных продуктов обмена (мочевина), избытка глюкозы аминокислот и пептидов, а также неметаболизируемых веществ (ксенобиотиков), в том числе лекарственных препаратов.
  • Регуляция артериального давления путём образования компонентов прессорной (ренин из клеток юкстагломерулярного аппарат) и депрессорной (простагландины А и Е из звездчатых клеток интерстиция мозгового вещества) систем.
  • Регуляция эритропоэза за счёт выделения почками гормона эритропоэтина.
  • Участие в механизмах гемостаза, поскольку в почках происходит обмен гепарина и синтезируется фермент урокиназа.

Выполнение почками гомеостатических функций связано с деятельностью их основной структурно-функциональной единицы — нефрона. Всего в почках человека насчитывается около 1,5 млн нефронов. В нефронах происходят три основных процесса функционирования почек: фильтрация, реабсорбция и секреция.

Процесс фильтрации происходит в начальной части нефрона — почечных клубочках, где образуется первичная моча. В норме объём фильтрации составляет около 120 мл в минуту и определяется величиной фильтрационного давления, которое возникает в результате разности между гидростатическим давлением в сосудах клубочков с одной стороны и суммой онкотического давления плазмы и давления в капсуле Боумена — с другой.

Гидростатическое давление в капиллярах клубочков довольно постоянно и зависит главным образом от тонуса приносящей и выносящей артериол. Онкотическое давление плазмы определяется содержанием в ней белка. Давление в полости Боумена зависит от проходимости канальцев и мочевыводящих путей.

Снижению клубочковой фильтрации способствуют понижение артериального давления, повышение онкотического давления плазмы и внутрипочечного давления, спазм приносящей артериолы, уменьшение проницаемости мембраны, числа клубочков и поверхности фильтрации. Напротив, увеличению фильтрации способствуют: спазм выносящих и расширение приносящих артериол, гипоонкия крови, повышение проницаемости мембран клубочков.

По своему составу первичная моча близка к плазме крови, но отличается от последней отсутствием крупнодисперсных белков, поскольку мембрана клубочков для них непроницаема, а также несколько меньшей концентрацией электролитов, так как часть из них связана с такими белками. Всего за сутки в почках человека фильтруется до 180 литров первичной мочи, однако среднесуточный объём мочи составляет только 1,5 л. Такое значительное снижение объёма выделяемой жидкости является результатом процесса усиленной реабсорбции воды, электролитов, аминокислот, глюкозы и других веществ.

Всего на этапе реабсорбции всасывается около 99% первичной мочи. При этом различают пороговые и беспороговые вещества. Пороговые всасываются до тех пор, пока их концентрация в крови не достигнет определённого уровня (глюкоза, аминокислоты, фосфаты, сульфаты, бикарбонаты). Всасывание беспороговых веществ происходит вне зависимости от их концентрации в крови (белки).

Реабсорбция веществ в почках может происходить с помощью нескольких различных механизмов, таких как:

  • Активный энергозависимый транспорт веществ специфическими переносчиками против электрохимического или концентрационного градиентов (так транспортируются: глюкоза, аминокислоты, ионы натрия, калия, магния и др.).
  • Пассивный транспорт по концентрационному, осмотическому или электрохимическому градиентам (так транспортируются: вода, мочевина, бикарбонаты, ионы Cl).
  • Транспорт белков путем пиноцитоза.

Одновременно с реабсорбцией происходит активное выделение в просвет канальцев ряда веществ — это так называемый процесс секреции. При этом часть секретируемых веществ образуется в почечном эпителии (Н+ и аммиак). Однако большее их количество извлекается эпителием из внеклеточной жидкости с помощью специфических транспортных систем, например, мочевая и желчные кислоты, ионы калия, адреналин, серотонин, гистамин, контрастные вещества, лекарственные препараты (пенициллин, атропин, хинин и др.).

В результате процессов реабсорбции и секреции формируется окончательный состав и плотность мочи, составляющая в норме 1,014-1,021 г/мл. У здорового человека объем и плотность мочи могут варьировать в широких пределах в зависимости от характера пищи и количества поступившей в организм жидкости.

Источники:
1. Федюкович Н.И. / Анатомия и физиология человека // Феникс, 2003.
2. Сумин С.А. / Неотложные состояния // Фармацевтический мир, 2000.

источник

В нефроне происходят три главных процесса: фильтрация в клубочках, реабсорбция и секреция в канальцах.

Клубочковая фильтрация. Начальным этапом образвания мочи является фильтрация: в почечном тельце из капиллярного клубочка в полость капсулы фильтруется жидкая часть крови. Клубочковая фильтрация – это пассивный процесс. В условиях покоя у взрослого человека около 1 /4 крови, выбрасываемой в аорту левым желудочком сердца, поступает в почечные артерии. Иными словами, через обе почки у взрослого мужчины проходит около 1300 мл крови в минуту, у женщин несколько меньше. Общая фильтрационная поверхность клубочков почек составляет примерно 1,5 м 2 . В клубочках из кровеносных капилляров в просвет капсулы почечного клубочка происходит ультрафильтрация плазмы крови, в результате чего образуется первичная моча, в которой практически отсутствует белок. В норме белки как коллоидные вещества не проходят через стенку капилляров в полость капсулы почечного клубочка. При ряде патологических состояний проницаемость мембраны почечного фильтра повышается, что ведет к изменению состава ультрафильтрата. Повышение проницаемости является главной причиной протеинурии, прежде всего альбуминурии. В норме объемная скорость фильтрации в среднем составляет 125 мл/мин, что в 100 раз превышает продукцию конечной мочи. Скорость фильтрации обеспечивается фильтрационным давлением, которое можно выразить следующей формулой:

где ФД – фильтрационное давление; КД – капиллярное давление; ОД – онко-тическое давление; КапсД – внутрикапсулярное давление. Следовательно, для обеспечения процесса фильтрации необходимо, чтобы гидростатическое давление крови в капиллярах превышало сумму онкотического и внутрикап-сулярного. В норме эта величина составляет около 40 гПа (30 мм рт. ст.). Вещества, усиливающие кровообращение в почках или увеличивающие количество функционирующих клубочков (например, теобромин, теофил-лин, плоды можжевельника, листья толокнянки и др.), обладают мочегонными свойствами.

Рис. 18.1. Строение юкстамедуллярного (а) и коркового (б) нефронов. I — корковое вещество; II — мозговое вещество; А — наружная зона мозгового вещества; Б — внутренняя зона мозгового вещества; 1 — сосудистый клубочек; 2 — капсула почечного клубочка; 3 — проксимальный каналец (извитая часть); 4 — проксимальный каналец (прямая часть); 5 — нисходящее тонкое колено петли нефрона; 6 — восходящее тонкое колено петли нефрона; 7 — восходящее толстое колено петли нефрона; 8 — дистальный извитой каналец; 9 — связующий каналец; 10 — собирательная трубка; 11 — собирательная почечная трубочка.

Капиллярное давление в почках зависит не столько от артериального давления, сколько от соотношения просвета «приносящей» и «выносящей» артериол клубочка. «Выносящая» артериола примерно на 30% меньше в диаметре, чем «приносящая», регуляция их просвета осуществляется прежде всего кининовой системой. Сужение «выносящей» артериолы увеличивает фильтрацию. Напротив, сужение «приносящей» артериолы снижает фильтрацию.

По величине клубочковой фильтрации судят о фильтрационной способности почек. Если в кровяное русло ввести вещество, которое фильтруется в клубочках, но не реабсорбируется и не секретируется канальцами нефро-нов, то его клиренс численно равен объемной скорости клубочковой фильтрации. Клиренс (очищение) любого соединения принято выражать количеством миллилитров плазмы, которое в 1 мин полностью освобождается от определенного вещества при прохождении ее через почки. Веществами, по которым чаще определяют клубочковую фильтрацию, являются инулин и маннитол. Для расчета клиренса (например, инулина) необходимо величину минутного диуреза умножить на Kм/Kкp(отношение концентраций данного вещества в моче и плазме крови):

где С – клиренс; Км – концентрация данного соединения в моче; Ккр – концентрация в плазме крови; V – количество мочи в 1 мин, мл. Например, при расчете клиренса инулина в норме получим величину клубочковой фильтрации, равную 100–125 мл за 1 мин.

Реабсорбция и секреция. Суточное количество ультрафильтрата в 3 раза превышает общее количество жидкости, содержащейся в организме. Естест-

венно, что первичная моча во время движения по почечным канальцам отдает большую часть своих составных частей, особенно воду, обратно в кровь. Лишь 1 % жидкости, профильтрованной клубочками, превращается в мочу.

В канальцах реабсорбируется 99% воды, натрия, хлора, гидрокарбоната, аминокислот, 93% калия, 45% мочевины и т.д. Из первичной мочи в результате реабсорбции образуется вторичная, или окончательная, моча, которая затем поступает в почечные чашки, лоханку и по мочеточникам попадает в мочевой пузырь.

Функциональное значение отдельных почечных канальцев в процессе мочеобразования неодинаково. Клетки проксимального сегмента нефрона реабсорбируют попавшие в фильтрат глюкозу, аминокислоты, витамины, электролиты; 6 /7 жидкости, составляющей первичную мочу, подвергается реабсорбции также в проксимальных канальцах. Вода первичной мочи частично (парциально) реабсорбируется в дистальных канальцах. В этих же канальцах происходит дополнительная реабсорбция натрия, могут секрети-роваться в просвет нефрона ионы калия, аммония, водорода и др.

В настоящее время в значительной степени изучены молекулярные механизмы реабсорбции и секреции веществ клетками почечных канальцев. Так, установлено, что при реабсорбции натрий пассивно поступает из просвета канальца внутрь клетки, движется по ней к области базальной плазматической мембраны и с помощью «натриевого насоса» поступает во внеклеточную жидкость. До 80% энергии АТФ в клетках канальцев почек расходуется на «натриевый насос». Всасывание воды в проксимальном сегменте происходит пассивно в результате активного всасывания натрия. Вода в этом случае «следует» за натрием. Кстати, в дистальном сегменте всасывание воды происходит вне всякой зависимости от всасывания ионов натрия; этот процесс регулируется антидиуретическим гормоном.

Калий в отличие от натрия может не только реабсорбироваться, но и секретироваться. При секреции калий из межклеточной жидкости поступает через базальную плазматическую мембрану в клетку канальца за счет работы «натрий-калиевого насоса», а затем выделяется в просвет нефрона через апикальную клеточную мембрану пассивно. Секреция, как и реабсорб-ция, является активным процессом, связанным с функцией клеток канальцев. Механизмы секреции те же, что и механизмы реабсорбции, но только все процессы протекают в обратном направлении – от крови к канальцу.

Вещества, которые не только фильтруются через клубочки, но и реабсор-бируются или секретируются в канальцах, имеют клиренс, который показывает целостную работу почек (смешанный клиренс). В зависимости от того, комбинируется ли фильтрация с реабсорбцией или с секрецией, выделяют два вида смешанного клиренса: фильтрационно-реабсорбционный и фильт-рационно-секреционный. Величина смешанного фильтрационно-реабсорб-ционного клиренса меньше величины клубочкового клиренса, так как часть вещества реабсорбируется из первичной мочи в канальцах. Значение этого показателя тем меньше, чем эффективнее реабсорбция в канальцах. Так, для глюкозы в норме он равен 0. Максимальное всасывание глюкозы в канальцах составляет 350 мг/мин. Максимальную способность канальцев к обратному всасыванию принято обозначать Тм (транспорт максимум). Иногда встречаются пациенты с заболеванием почек, которые, несмотря на высокое содержание глюкозы в плазме крови, не выделяют глюкозу с мочой, так как фильтруемое количество глюкозы ниже значения Тм. Наоборот, при врожденном заболевании почечная глюкозурия может быть основана на снижении значения Тм.

Рис. 18.2. Регуляция реабсорбции в почке (схема по А.П. Зильберу). Объяснение в тексте.

Для мочевины величина смешанного фильтрационно-реабсорбционного клиренса составляет 70. Это значит, что из каждых 125 мл ультрафильтрата или плазмы крови за минуту от мочевины полностью освобождаются 70 мл. Иными словами, определенное количество мочевины, а именно то, которое содержится в 55 мл ультрафильтрата или плазмы, всасывается обратно.

Величина смешанного фильтрационно-секреционного клиренса может быть больше клубочкового клиренса, так как к первичной моче прибавляется дополнительное количество вещества, которое секретируется в канальцах. Этот клиренс тем больше, чем сильнее секреция канальцев. Клиренс некоторых веществ, секретируемых канальцами (например, диодраст, пара-аминогиппуровая кислота), настолько высок, что практически приближается к величине почечного кровотока (количество крови, которое за минуту проходит через почки). Таким образом, по клиренсу этих веществ можно определить величину кровотока.

Реабсорбция и секреция различных веществ регулируются ЦНС и гормональными факторами. Например, при сильных болевых раздражениях или отрицательных эмоциях может возникнуть анурия (прекращение процесса мочеобразования). Всасывание воды возрастает под влиянием антидиуретического гормона вазопрессина. Альдостерон увеличивает реабсорбцию натрия в канальцах, а вместе с ним и воды. Всасывание кальция и фосфата изменяется под влиянием паратиреоидного гормона. Паратгормон стимулирует секрецию фосфата, а витамин D задерживает ее.

Регуляция реабсорбции натрия и воды в почке представлена на рис. 18.2. При недостаточном поступлении крови к почечным клубочкам, сопровождающемся небольшим растяжением стенок артериол (снижение давления), происходит возбуждение заложенных в стенках артериол клеток юкстагло-мерулярного аппарата (ЮГА). Они начинают усиленно секретировать протеолитический фермент ренин, катализирующий начальный этап образования ангиотензина. Субстратом ферментативного действия ренина является ангиотензиноген (гликопротеин), относящийся к α2-глобулинам и содержащийся в плазме крови и лимфе.

Ренин разрывает в молекуле ангиотензиногена пептидную связь, образованную двумя остатками лейцина, в результате чего освобождается дека-пептид ангиотензин I, биологическая активность которого незначительна в среде, близкой к нейтральной.

Считают, что под влиянием специальной пептидазы, обнаруженной в плазме крови и тканях,– ангиотензин I превращающего фермента (дипеп-тидил-карбоксипептидаза I) из ангиотензина I образуется октапептид ан-гиотензин II. Главным местом этого превращения являются легкие.

В 1963 г. В.Н. Орехович и соавт. выделили из почек крупного рогатого скота протеолитический фермент, отличающийся по специфичности действия от всех известных к тому времени тканевых протеаз. Этот фермент отщепляет дипептиды от карбоксильного конца различных пептидов. Исключение составляют пептидные связи, образованные при участии иминогруппы пролина. Фермент был назван карбоксикатепсином. Оптимум его действия проявляется в среде, близкой к нейтральной. Он активируется ионами Сl – и относится к металлоферментам. В.Н. Оре-хович выдвинул предположение, что именно карбоксикатепсин является тем ферментом, который превращает ангиотензин I (Acп–Apг–Вал–Иле–Вал–Гис–Про– Фен–Гис–Лей) в ангиотензин II, отщепляя от ангиотензина I дипептид Гис–Лей. Учитывая широкую специфичность действия карбоксикатепсина, В.Н. Орехович и сотр. предположили возможность участия этого фермента в инактивации антагониста ангиотензина – брадикинина. В 1969-1970 гг. были опубликованы работы, подтверждающие данные положения. Одновременно было доказано, что превращение ангиотензина I в ангиотензин II происходит не только в тканях легких, но и в почках (сейчас уже известно, что карбоксикатепсин имеется практически во всех тканях).

В отличие от своего предшественника (ангиотензина I) ангиотензин II обладает очень высокой биологической активностью. В частности, ангио-тензин II способен стимулировать секрецию надпочечниками альдостерона, который увеличивает реабсорбцию натрия в канальцах, а вместе с ним и воды. Объем циркулирующей крови возрастает, давление в артериоле повышается и восстанавливается равновесие системы.

Читайте также:  У собаки непроизвольно капает моча

При снижении кровенаполнения предсердий и, возможно, каротидных сосудов реагируют объемные рецепторы (волюморецепторы); их импульс передается на гипоталамус, где образуется АДГ (вазопрессин). По портальной системе гипофиза этот гормон попадает в заднюю долю гипофиза, концентрируется там и выделяется в кровь. Основной точкой приложения действия АДГ является, по-видимому, стенка дистальных канальцев нефро-на, где он повышает уровень активности гиалуронидазы. Последняя, деполимеризуя гиалуроновую кислоту, повышает проницаемость стенок канальцев. Вода пассивно диффундирует через мембраны клетки вследствие осмотического градиента между гиперосмотической жидкостью организма и гипоосмотической мочой, т.е. АДГ регулирует реабсорбцию свободной воды. Таким образом, АДГ понижает осмотическое давление в тканях организма, а альдостерон повышает его.

Почки имеют также важное значение как инкреторный (внутрисекреторный) орган. Как отмечалось, в клетках ЮГА, расположенного в области сосудистого полюса клубочка, образуется ренин. Известно, что ренин через ангиотензин влияет на кровяное давление во всем организме. Ряд исследователей считают, что повышенное образование ренина является одной из главных причин развития определенных форм гипертонической болезни.

В почках также вырабатывается эритропоэтин, который стимулирует

костномозговое кроветворение (эритропоэз). Эритропоэтин – вещество белковой природы. Его биосинтез почками активно происходит при различных стрессовых состояниях: гипоксии, кровопотере, шоке и т.д. В последние годы установлено, что в почках осуществляется также синтез простагланди-нов, которые способны менять чувствительность почечной клетки к действию некоторых гормонов.

источник

Механизм образования мочи – это жизненно важный процесс, реализуемый почками, включает три составляющих: фильтрацию, реабсорбцию и секрецию. Нарушения в реализации механизма образования и выведения мочи проявляются в виде тяжелых заболеваний.

Моча состоит из воды, определенных электролитов и конечных продуктов обмена веществ в клетках. Конечные продукты метаболизма из клеток поступают в кровь во время ее циркуляции по телу и выводятся почками в составе мочи. Механизм образования мочи в почках реализуется нефроном.

Нефрон – морфофункциональная единица почки, обеспечивающая механизм мочеобразования и выведения. В каждой почке насчитывается более 1 миллиона нефронов. В структуре нефрона выделяют такие части: клубочек, капсула Боумена, система канальцев. Клубочек – это сеть артериальных капилляров, погруженных в капсулу Боумена. Двойные стенки капсулы формируют полость, продолжением которой являются канальцы. Канальцы нефрона образуют петлю, отдельные части которой выполняют определенные функции в механизме образования мочи. Извитая и прямая часть канальцев, примыкающая к капсуле Боумена, называется проксимальный каналец. Далее следуют нисходящий тонкий сегмент, восходящий тонкий сегмент, дистальный прямой каналец или толстый восходящий сегмент петли Генле, дистальный извитой каналец, соединительный каналец и собирательная трубка.

Механизм образования мочи начинается с процесса
фильтрации в почечных клубочках
и образования первичной мочи.

Суть процесса фильтрации в следующем:
Кровь, поступающая в клубочки, под действием осмоса и диффузии фильтруется через специфическую мембрану клубочков и теряет большую часть жидкости и растворимые как полезные химические вещества, так и шлаки. Продукт фильтрации крови в клубочках поступает в капсулу Боумена. Вода, шлаки, соль, глюкоза и другие химические вещества, которые отфильтровались из крови в капсулу Боумена, называются первичная моча. Таким образом, первичная моча состоит из воды, избытка солей, глюкозы, мочевины, креатинина, аминокислот и других низкомолекулярных соединений. В норме суммарная скорость клубочковой фильтрации (СКФ, для всех нефронов обеих почек) составляет около 125 мл в минуту. Это значит, что около 125 мл воды и растворенных веществ поступают в капсулу Боумена и канальцевый аппарат почки из крови в минуту. За час реализации механизма образования первичной мочи почки фильтруют 125 мл / мин х 60мин/час = 7500 мл, за сутки соответственно 7500 мл / ч x 24 ч / сутки = 180 000 мл / сутки или 180 л / сутки!

Очевидно, что никто никогда не выделяет 180 л мочи в сутки. Почему? Потому что механизм образования мочи включает процесс канальцевой реабсорбции, при реализации которого почти весь этот объем первичной мочи возвращают в кровь.

Реабсорбция – вторая составляющая механизма образования мочи, по определению, это движение веществ из почечных канальцев обратно в капилляры крови, окружающие канальцы (так называемые перитубулярные капилляры). В механизме образования первичной мочи реализуются свойства структур эпителиальных клеток канальцев абсорбировать воду, глюкозу и другие питательные вещества, натрий (Na+) и другие ионы и секретировать их в кровь. Реабсорбция начинается в проксимальных канальцах и продолжается в петле Генле, дистальных извитых канальцах и собирательных трубочках.

При реализации сложного механизма образования вторичной мочи более 178 литров воды в день в из проксимальных канальцев возвращается в кровь.

Ни одно из ценных питательных веществ не теряется с мочой, все они подвергаются реабсорбции в том числе глюкоза. В норме вся глюкоза (сахар крови) полностью возвращается в кровь. В том случае, если содержание глюкозы в крови превышает 10 ммоль/л (печеный порог), то та часть глюкозы выделяется с мочой. Ионы натрия (Na+) и другие ионы возвращаются в кровь частично. Так, количество реабсорбируемого иона натрия во многом зависит от того, сколько соли употребляется в пищу. Чем больше соли поступает с пищей, тем меньше реабсорбируется натрия из состава первичной мочи. Чем меньше соли, тем большее количество натрия поглощается обратно в кровь, а количество соли в моче уменьшается.

Третий важный процесс в механизме образования мочи – канальцевая секреция. Канальцевая секреция – это процесс, при котором из капилляров вокруг дистальных и собирательных канальцев, в полость канальцев, т.е. в первичную мочу, путем активного транспорта и диффузии секретируются ионы водорода (Н+), ионы калия (K+), аммиак (NH3) и некоторые лекарства. В результате процессов реабсорбции и секреции в почечных канальцах первичной мочи образуется вторичная моча. Суточный объем вторичной мочи в норме составляет 1,5 – 2,0 литра.

Канальцевая секреция в почках играет важную роль в поддержании кислотно-щелочного баланс организма. Таким образом, образование мочи осуществляется последовательной реализацией в нефронах почки процессов фильтрации, реабсорбции и секреции.

источник

Механизм образования мочи включает в себя три процесса: 1) клубочковая фильтрация; 2) канальцевая секреция; 3) канальцевая реабсорбция. В процессах образования мочи участвуют все факторы физического переноса — диффузия и осмос по градиентам концентрации, а также активные специфические транспортные системы, работающие против этого градиента.

Содержание вещества в конечной моче равно количеству его, поступившему в фильтрат, плюс секреция, минус реабсорбция. Одни вещества только фильтруются (инулин), другие фильтруются и секретируются клетками канальцев (гиппуровая кислота, аммиак), третьи после фильтрации или (и) секреции подвергаются полной или частичной реабсорбции (глюкоза, некоторые соли и белки), четвертые попадают в мочу только в составе секретов канальцевого эпителия (антибиотики).

Клубочковая фильтрация. Фильтрация — это физический процесс. Главным фактором, который обусловливает фильтрацию, является разность гидростатического давления по обе стороны фильтра (фильтрационное давление). В почках оно равно:

Р фильтрационное = Р в клубочке — (Р онкотическое + Р тканевое)

Кроме фильтрационного давления, имеют значение величина молекулы (молекулярный вес), растворимость в жирах, электрический заряд. В состав клубочкового фильтра входит 20-40 капиллярных петель, окруженных внутренним листком боуменовой капсулы. Эндотелий капилляра имеет фенестры (дырки). Подоциты боуменовой капсулы имеют широкие щели между отростками. Таким образом, проницаемость определяется структурой основной мембраны. Промежутки между коллагеновыми нитями этой мембраны равны 3-7,5 нм.

Величина пор в фильтрующей поверхности капилляра и капсулы Боумена позволяет свободно проходить через почечный фильтр веществам с молекулярной массой не более 70 000 Более крупные молекулы проникают с трудом. По данным некоторых ученых, альбумины с молекулярной массой около 69 000 практически все фильтруются в почках и обратно всасываются в канальцах. По-видимому, 80 000 — абсолютный предел проницаемости через поры капсулы и клубочка нормальной почки. Содержание веществ с молекулярной массой не более 55000 в фильтрате такое же, как и в плазме крови. По мере возрастания молекулярной массы прохождение веществ через поры мембран затрудняется, т. е. происходит молекулярное просеивание. Например, фильтруемость гемоглобина, имеющего молекулярную массу 64500, составляет не более 3%, Таким образом, фильтрат почти не содержит макромолекул.

У мужчин скорость клубочковой фильтрации достигает 125 мл/мин, у женщин – 110 мл/мин. За сутки образуется около 180 л фильтрата. Поскольку объем плазмы равен примерно 3л, видно, то его фильтрация осуществляется всего за 25 минут, а за сутки плазма очищается почками 60 раз. Соответственно межклеточная жидкость подвергается очистке за сутки 12 раз.

Скорость клубочковой фильтрации (СКФ) поддерживается практически на постоянном уроне за счет миогенных реакций гладкой мускулатуры приносящих и выносящих сосудов, что обеспечивает постоянство эффективного фильтрационного давления. Ночью СКФ на 25% ниже. СКФ определяют по клиренсу инулина.

В образовании мочи участвуют все отделы нефрона. По мере прохождения крови через клубочки из них путем фильтрации образуется первичная моча. Фильтрат проходит через канальцы в собирательные трубочки. При этом его состав существенно изменяется в результате трансканальцевого транспорта воды и растворенных веществ. Этот транспорт происходит в двух направлениях. Если он направлен в каналец, то его называют канальцевой секрецией, если он направлен из канальца – канальцевой реабсорбцией.

В экскреции некоторых веществ, таких как К + , мочевая кислота и мочевина, участвуют все три механизма, только фильтрация и секреция – парааминогиппуровая кислота, только фильтрация и реабсорбция – глюкоза, только фильтрация – инулин.

Понятие о почечном клиренсе. Для того, чтобы объяснить различия в скорости выведения почками веществ, необходимо количественно оценить интенсивность их фильтрации в клубочках и переноса в канальцах. Такая оценка стала возможна после введения понятия клиренс. Почечный клиренс отражает скорость очищения плазмы от данного вещества.

Почечный клиренс какого-либо вещества В (Св) равен отношению скорости выделения этого вещества с мочой к его концентрации в плазме крови.

где Мв— содержание В в моче, Пв — содержание в плазме, а V — объем мочи за минуту.

Из этой формулы следует, что Св х Пв= Мв х V, т.е. количество вещества, удаляемого из плазмы за единицу времени, равно количеству вещества, выделяемого за это время с мочой. Клиренс какого-либо вещества количественно равен объему плазмы, полностью очищаемого от этого вещества почками за 1 минуту.

Однако, известны только два вещества, от которых определенный объем плазмы действительно очищается полностью. Эти два вещества и служат основной для общей оценки функции почки.

1. Клиренс инулина соответствует скорости клубочковой фильтрации, т.е. той части почечного плазматока, который фильтруется в клубочках.

2. Клиренс парааминогиппуровой кислоты (ПАГ) практически равен величине общего почечного плазматока, т.к. она выделяется как с фильтрацией, так и с секрецией полностью.

Для оценки функции почек не обязательно определять клиренс всех выводимых почками веществ. Достаточно оценить скорость клубочковой фильтрации (по инулину) и почечный плазматок (по ПАГ). Если оба эти показателя отчетливо снижены, то снижены и показатели очищения крови от других веществ. Обычно при этом повышена концентрация их в крови. Так, повышение содержания в крови небелкового азота свидетельствует о почечной недостаточности, если клиренс инулина снижен.

У взрослого человека весом 70 кг скорость кровотока в обоих почках равна 1300 мл/мин, что составляет 25% МОК. Такая высокая интенсивность кровотока необходима для обеспечения достаточного объема клубочковой фильтрации. У человека почечный кровоток (ПКТ) определяется методом измерения клиренса ПАГ, который равен почечному плазматоку (ППТ).

где Гп — гематокритный показатель.

Особенностью почечного кровотока является его ауторегуляция. Она проявляется в том, что изменение величины среднего артериального давления от 80 до 180 мм рт. ст. не отражается на скорости почечного кровотока. Важнейшее значение этого явления состоит в поддержании постоянства скорости клубочковой фильтрации.

Содержание вещества в конечной моче равно его количеству, профильтровавшемуся в клубочках и поступившему в фильтрат при канальцевой секреции, за вычетом реабсорбированного.

Канальцевая секреция и реабсорбция. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0—1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na + , СI — , НСОз – . В последующих отделах нефрона всасываются преимущественно электролиты и вода. Секреция и реабсорбция могут быть пассивными и активными, т.е. без расхода энергии или происходить с затратой свободной энергии, вырабатываемой в реакциях метаболизма. Активная реабсорбция и секреция происходят главным образом в проксимальной части канальца В более дистальных отделах нефрона осуществляется тонкая регуляция содержания сильных электролитов, воды и Н + .

Реабсорбция воды и электролитов. При нормальном потреблении воды с мочой выделяется 1% или менее фильтрата, образующегося в единицу времени. Следовательно, профильтровавшаяся вода на 99% или более реабсорбируется в канальцах. Чрезмерное потребление воды сопровождается усилением мочеотделения в виде водного диуреза, при котором мочеотделение достигает 15% от скорости фильтрации. В этом случае выделяются большие объемы мочи гипотонической по отношению к крови. У человека 80% воды реабсорбируется в проксимальной части канальца.

Ионы K + , Na + , Ca 2+ , HPO4 – , Cl – , Mg 2+ , HCO3 – , реабсорбируются, главным образом, как и вода, в проксимальной части нефрона. Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной мочи уменьшается, и в начальный отдел петли нефрона поступает около 30% профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается до 25 %, в дистальном извитом канальце — около 9 %, и менее 1% реабсорбируется в собирательных трубках или экскретируется с мочой.

Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.

Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения.

Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол.

Читайте также:  Была ли у вас мутная моча при беременности

Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Глюкоза беспрепятственно проходит через клубочковый фильтр, но во вторичной моче она отсутствует или присутствует в ничтожном количестве. Иначе говоря, глюкоза полностью возвращается в кровь с помощью реабсорбции. При этом пороговый уровень реабсорбции составляет примерно 1,8 г/л (10 ммоль/л). Реабсорбция аминокислот и глюкозы происходит в проксимальной части канальца. Она сопряжена с транспортом Na + . В моче присутствуют только следы аминокислот, а реабсорбция носит активный характер. Мочевина реабсорбируется пассивно, т.е. только в силу разности концентраций.

Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+ ) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.

Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта — по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.

Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.

Канальцевая секреция. В выделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках.

Транспорт в нефроне К + характеризуется тем, что К + не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При секреции К + поступает в клетку в обмен на Na + через эту же мембрану с помощью натрий-калиевого насоса, который удаляет Na + из клетки; тем самым поддерживается высокая внутриклеточная концентрация К + . При избытке К + в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К + мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К + по градиенту концентрации может выходить из клетки.

источник

Формирование состава конечной мочи осуществляется в ходе трех процессов — фильтрации в клубочках, реабсорбции и секреции в канальцах, трубочках и протоках. Оно представлено следующей формулой:

Выделение = (Фильтрация — Реабсорбция) + Секреция.

Интенсивность выделения многих веществ из организма определяется в большей степени реабсорбцией, а некоторых веществ — секрецией.

Реабсорбция (обратное всасывание) — это возврат необходимых организму веществ из просвета канальцев, трубочек и протоков в интерстиций и кровь (рис. 1).

Реабсорбция характеризуется двумя особенностями.

Во-первых, канальцевая реабсорбция жидкости (воды), как и клубочковая фильтрация, является значительным в количественном отношении процессом. Это означает, что потенциальный эффект от малого изменения реабсорбции может оказаться очень существенным для объема выделяемой мочи. Например, снижение реабсорбция всего на 5% (со 178,5 до 169,5 л/сут) увеличит объем конечной мочи с 1,5 л до 10,5 л/сут (в 7 раз, или на 600%) при прежнем уровне фильтрации в клубочках.

Во-вторых, канальцевая реабсорбция отличается высокой селективностью (избирательностью). Некоторые вещества (аминокислоты, глюкоза) почти полностью (более чем на 99%) реабсорбируются, а вода и электролиты (натрий, калий, хлор, бикарбонаты) в очень значительных количествах подвергаются реабсорбции, но их реабсорбция может существенно изменяться в зависимости от потребностей организма, что сказывается на содержании этих веществ в конечной моче. Другие вещества (например, мочевина) реабсорбируются значительно хуже и выделяются в больших количествах с мочой. Многие вещества после фильтрации не подвергаются реабсорбции и полностью экскретируются при любой их концентрации в крови (например, креатинин, инулин). Благодаря избирательной реабсорбции веществ в почках осуществляется точный контроль состава жидких сред организма.

Рис. 1. Локализация транспортных процессов (секреции и реабсорбцин в нефроне)

Вещества в зависимости от механизмов и степени их реабсорбции делят на пороговые и беспороговые.

Пороговые вещества в нормальных условиях реабсорбируются из первичной мочи почти полностью при участии механизмов облегченного транспорта. Эти вещества появляются в значительных количествах в конечной моче, когда их концентрация в плазме крови (и тем самым в первичной моче) увеличится и превысит «порог выведения», или «почечный порог». Величина этого порога определяется возможностями белков-переносчиков в мембране эпителиальных клеток обеспечивать перенос профильтровавщихся веществ через стенку канальцев. При исчерпании (перенасыщении) возможностей транспорта, когда в переносе задействованы все белки-переносчики, часть вещества не может реабсорбироваться в кровь, и оно появляется в конечной моче. Так, например, порог выведения для глюкозы составляет 10 ммоль/л (1,8 г/л) и почти в 2 раза превышает ее нормальное содержание в крови (3,33-5,55 ммоль/л). Это означает, что если концентрация глюкозы в плазме крови превышает 10 ммоль/л, то наблюдается глюкозурия — выделение глюкозы с мочой (в количествах более 100 мг/суг). Интенсивность глюкозурии возрастает пропорционально увеличению содержания глюкозы в плазме крови, что является важным диагностическим признаком тяжести сахарного диабета. В норме уровень глюкозы в плазме крови (и первичной моче) даже после еды почти никогда не превышает величины (10 ммоль/л), необходимой для ее появления в конечной моче.

Беспороговые вещества не имеют порога выведения и удаляются из организма при любой их концентрации в плазме крови. Такими веществами обычно являются продукты метаболизма, подлежащие удалению из организма (креатинин), и другие органические вещества (например, инулин). Эти вещества используются для исследования функций почек.

Одни из удаляемых веществ могут частично реабсорбироваться (мочевина, мочевая кислота) и выводятся не полностью (табл. 1), другие практически не реабсорбируются (креатинин, сульфаты, инулин).

Таблица 1. Фильтрация, реабсорбции и выделение почками различных веществ

Профильтровано

Реабсорбировано

Реабсорбция. %

Реабсорбция — многоэтапный процесс, включающий переход воды и растворенных в ней веществ сначала из первичной мочи в межклеточную жидкость, а затем через стенки перитубулярных капилляров в кровь. Переносимые вещества могут проникать в межклеточную жидкость из первичной мочи двумя путями: трансцеллюлярно (через клетки канальцевого эпителия) либо парацеллюлярно (по межклеточным пространствам). Реабсорбция макромолекул при этом осуществляется за счет эндоцитоза, а минеральных и низкомолекулярных органических веществ — за счет активного и пассивного транспорта, воды — через аквапорины пассивно, путем осмоса. Из межклеточных пространств в перитубулярные капилляры растворенные вещества реабсорбируются под действием разницы сил между давлением крови в капиллярах (8-15 мм рт. ст.) и ее коллоидно-осмотическим (онкотическим) давлением (28-32 мм рт. ст.).

Процесс реабсорбции ионов Na+ из просвета канальцев в кровь состоит как минимум из грех этапов. На 1-м этапе ионы Na+ поступают из первичной мочи в клетку эпителия канальца через апикальную мембрану пассивно путем облегченной диффузии с помощью белков-переносчиков по концентрационному и электрическому градиентам, создаваемым работой Na+/K+ насоса базолатеральной поверхности эпителиальной клетки. Поступление ионов Na+ в клетку часто сопряжено с совместным транспортом глюкозы (белок-переносчик (SGLUT-1) или аминокислот (в проксимальном канальце), ионов К+ и CI+ (в петле Генле) в клетку (котранспорт, симпорт) или с контртранспортом (антипортом) ионов Н+ , NH3+ из клетки в первичную мочу. На 2-м этапе транспорт ионов Na+ через базолагеральную мембрану в межклеточную жидкость осуществляется первично-активным транспортом против электрического и концентрационного градиентов с помощью Na+/К+ насоса (АТФазы). Реабсорбция ионов Na+ способствует обратному всасыванию воды (путем осмоса), вслед за которой пассивно всасываются ионы CI-, НС03-, частично мочевина. На 3-м этапе реабсорбция ионов Na+, воды и других веществ из межклеточной жидкости в капилляры происходит под действием сил градиентов гидростатического и онкотического давлений крови.

Глюкоза, аминокислоты, витамины реабсорбируются из первичной мочи путем вторично-активного транспорта (симпорта совместно с ионом Na+). Белок-переносчик апикальной мембраны эпителиальной клетки канальца связывает ион Na+ и молекулу органического вещества (глюкозу SGLUT-1 или аминокислоту) и перемещает их внутрь клетки, причем движущей силой является диффузия Na+ в клетку по электрохимическому градиенту. Из клетки через базолагеральную мембрану глюкоза (с участием белка-переносчика GLUT-2) и аминокислоты выходят пассивно путем облегченной диффузии по концентрационному градиенту.

Белки молекулярной массой менее 70 кД, фильтрующиеся из крови в первичную мочу, реабсорбируются в проксимальных канальцах путем пиноцитоза, частично расщепляются в эпителии лизосомными ферментами, и низкомолекулярные компоненты и аминокислоты возвращаются в кровь. Появление белка в моче обозначается термином «протеинурия» (чаще альбуминурия). Кратковременная протеинурия до 1 г/л может развиться у здоровых лиц после интенсивной продолжительной физической работы. Наличие постоянной и более высокой протеинурии — признак нарушения механизмов клубочковой фильтрации и (или) канальцевой реабсорбции в почках. Клубочковая (гломерулярная) протеинурия обычно развивается при повышении проницаемости клубочкового фильтра. В результате белок поступает в полость капсулы Шумлянского-Боумена и проксимальные канальцы в количествах, превышающих возможности его ребсорбции механизмами канальцев — развивается умеренная протеинурия. Канальцевая (тубулярная) протеинурия связана с нарушением реабсорбции белка вследствие повреждения эпителия канальцев или нарушения лимфооттока. При одновременном повреждении клубочковых и канальцевых механизмов развивается высокая протеинурия.

Реабсорбция веществ в почках тесно связана с процессом секреции. Термин «секреция» для описания работы почек используется в двух значениях. Во-первых, секреция в почках рассматривается как процесс (механизм) транспорта веществ, подлежащих удалению в просвет канальцев не через клубочки, а из интерстиция почки или непосредственно из клеток почечного эпителия. При этом выполняется экскреторная функция почки. Секреция веществ в мочу осуществляется активно и (или) пассивно и часто сопряжена с процессами образования этих веществ в эпителиоцитах канальцев почек. Секреция дает возможность быстро удалить из организма ионы К+, Н+, NН3+, а также некоторые другие органические и лекарственные вещества. Во-вторых, термин «секреция» используется для описания синтеза в почках и высвобождения ими в кровь гормонов эритропоэтина и кальцитриола, фермента ренина и других веществ. В почках активно идут процессы глюконеогенеза, и образующаяся при этом глюкоза также транспортируется (секретируется) в кровь.

Проксимальные канальцы обеспечивают реабсорбцию большей части воды из первичной мочи (примерно 2/3 объема клубочкового фильтрата), значительное количество ионов Na + , К+, Са 2+ , СI-, НСО3-. Практически все органические вещества (аминокислоты, белки, глюкоза, витамины), микроэлементы и другие необходимые организму вещества реабсорбируются в проксимальных канальцах (рис. 6.2). В других отделах нефрона осуществляется только реабсорбция воды, ионов и мочевины. Столь высокая реабсорбционная способность проксимального канальца обусловлена рядом структурных и функциональных особенностей его эпителиальных клеток. Они оснащены хорошо развитой щеточной каемкой на апикальной мембране, а также широким лабиринтом межклеточных пространств и каналов на базальной стороне клеток, что существенно увеличивает площадь всасывания (в 60 раз) и ускоряет транспорт веществ через них. В эпителиоцитах проксимальных канальцев очень много митохондрий, и интенсивность метаболизма в них в 2 раза превосходит таковую в нейронах. Это обеспечивает возможность получения достаточного количества АТФ для осуществления активного транспорта веществ. Важная особенность реабсорбции в проксимальной части канальцев заключается в том, что вода и растворенные в ней вещества реабсорбируются здесь в эквивалентных количествах, что обеспечивает изоосмолярность мочи проксимальных канальцев и ее изоосмотичность с плазмой крови (280-300 мосмоль/л).

В проксимальных канальцах нефрона происходит первично-активная и вторично-активная секреция веществ в просвет канальцев с помощью различных белков-переносчиков. Секреция выводимых веществ осуществляется как из крови перитубулярных капилляров, так и химических соединений, образующихся непосредственно в клетках канальцевого эпителия. Из плазмы крови в мочу секретируются многие органические кислоты и основания (например, парааминогиппуровая кислота (ПАГ), холин, тиамин, серотонин, гуанидин и др.), ионы (Н+, NH3+, К+), лекарственные вещества (пенициллин и др.). Для ряда ксенобиотиков органического происхождения, поступивших в организм (антибиотики, красители, рентгено- контрастные вещества), скорость их выделения из крови путем канальцевой секреции значительно превышает их выведение путем клубочковой фильтрации. Секреция ПАГ в проксимальных канальцах идет столь интенсивно, что кровь очищается от нее уже за одно прохождение через перитубулярные капилляры коркового вещества (следовательно, определяя клиренс ПАГ, можно рассчитать объем эффективного, участвующего в моче- образовании почечного плазмотока). В клетках канальцевого эпителия при дезаминировании аминокислоты глутамина образуется аммиак (NH3), который секретируется в просвет канальца и поступает в мочу. В ней аммиак связывается с ионами Н+ с образованием иона аммония NH4+ (NH3 + Н+ -> NH4+). Секретируя NH3, и ионы Н + , почки принимают участие в регуляции кислотно-основного состояния крови (организма).

В петле Генле реабсорбция воды и ионов пространственно разделены, что обусловлено особенностями строения и функций ее эпителия, а также гиперосмотичностью мозгового вещества почек. Нисходящая часть петли Генле высокопроницаема для воды и только умеренно проницаема для растворенных в ней веществ (включая натрий, мочевину и др.). В нисходящей части петли Генле происходит реабсорбция 20% воды (под действием высокого осмотического давления в окружающей каналец среде), а осмотически активные вещества остаются в канальцевой моче. Это обусловлено высоким содержанием хлорида натрия и мочевины в гиперосмотичной межклеточной жидкости мозгового слоя почки. Осмотичность мочи по мере ее продвижения к вершине петли Генле (вглубь мозгового слоя почки) возрастает (за счет реабсорбции воды и поступления хлорида натрия и мочевины по концентрационному градиенту), а объем — уменьшается (за счет реабсорбции воды). Данный процесс называется осмотическим концентрированием мочи. Максимальная осмотичность канальцевой мочи (1200-1500 мосмоль/л) достигается на вершине петли Генле юкстамедуллярных нефронов.

Далее моча поступает в восходящее колено петли Генле, эпителий которого не проницаем для воды, но проницаем для ионов, растворенных в ней. Этот отдел обеспечивает реабсорбцию 25% ионов (Na + , K+, СI-) от их общего количества, поступившего в первичную мочу. Эпителий толстой восходящей части петли Генле имеет мощную ферментную систему активного транспорта ионов Na+ и К+ в виде Na+/К+ насосов, встроенных в базальные мембраны эпителиальных клеток.

В апикальных мембранах эпителия имеется котранспортный белок, одновременно переносящий из мочи в цитоплазму один ион Na+ два иона СI- и один ион К+. Источником движущей силы для этого котранспортера является энергия, с которой ионы Na+ по градиенту концентрации устремляются в клетку, ее достаточно и для перемещения ионов К против градиента концентрации. Ионы Na+ могут поступать в клетку и в обмен на ионы Н с помощью Na+/Н+ котранспортера. Выход (секреция) К+ и Н+ в просвет канальца создает в нем избыточный положительный заряд (до +8 мВ), который способствует диффузии катионов (Na+, К+, Са 2+ , Mg 2+ ) парацеллюлярно, через межклеточные контакты.

Вторично-активный и первично-активный транспорт ионов из восходящего колена петли Генле в окружающее каналец пространство является важнейшим механизмом создания высокого осмотического давления в интерстиции мозгового слоя почки. В восходящем отделе петли Генле вода не реабсорбируется, а концентрация осмотически активных веществ (прежде всего ионов Na+ и СI+) в канальцевой жидкости снижается вследствие их реабсорбции. Поэтому на выходе из петли Генле в канальцах всегда находится гипотоничная моча с концентрацией осмотически активных веществ ниже 200 мосмоль/л. Такое явление называют осмотическим разведением мочи, а восходящую часть петли Генле — разводящим сегментом нефрона.

Создание гиперосмотичности в мозговом веществе почки рассматривается как главная функция петли нефрона. Выделяют несколько механизмов ее создания:

  • активная работа поворотно-противоточной системы канальцев (восходящего и нисходящего) петли нефрона и мозговых собирательных протоков. Движение жидкости в петле нефрона в противоположных направлениях навстречу друг другу вызывает суммацию небольших поперечных градиентов и формирует большой продольный корково-мозговой градиент осмоляльности (от 300 мосмоль/л в корковом веществе до 1500 мосмоль/л возле вершины пирамид в мозговом веществе). Механизм работы петли Генле получил название поворотно-противоточной множительной системы нефрона. Петля Генле юкстамедуллярных нефронов, пронизывающая насквозь все мозговое вещество почки, играет основную роль в этом механизме;
  • циркуляция двух главных осмотически активных соединений — натрия хлорида и мочевины. Эти вещества вносят основной вклад в создание гиперосмотичности интерстиция мозгового вещества почек. Их циркуляция зависит от избирательной проницаемости мембраны восходящего колена петли нсфрона для электролитов (но не для воды), а также регулируемой АДГ проницаемости стенок мозговых собирательных протоков для воды и мочевины. Натрия хлорид циркулирует в петле нефрона (в восходящем колене ионы активно реабсорбируются в интерстиций мозгового вещества, а из него согласно законам диффузии поступают в нисходящее колено и снова поднимаются в восходящее колено и т.д.). Мочевина циркулирует в системе собирательный проток мозгового вещества — интерстиций мозгового вещества -тонкая часть петли Генле — собирательный проток мозгового вещества;
  • пассивная поворотно-противоточная система прямых кровеносных сосудов мозгового вещества почек берег начало от выносящих сосудов юкстамедуллярных нефронов и идет параллельно петле Генле. Кровь движется по нисходящему прямому колену капилляра в область с возрастающей осмолярностью, а затем после поворота на 180° — в обратном направлении. При этом ионы и мочевина, а также вода (в противоположном ионам и мочевине направлении) совершают челночные перемещения между нисходящими и восходящими частями прямых капилляров, что обеспечивает поддержание высокой осмоляльности мозгового вещества почки. Этому способствует также низкая объемная скорость кровотока через прямые капилляры.

Из петли Генле моча попадает в дистальный извитой каналец, далее — в соединительный каналец, затем — в собирательную трубочку и собирательный проток коркового вещества почек. Все указанные структуры расположены в корковом веществе почки.

В дистальных и соединительных канальцах нефрона и собирательных трубочках реабсорбция ионов Na+ и воды зависит от состояния водно-электролитного баланса организма и находится под контролем антидиуретического гормона, альдостерона, натрийуретического пептида.

Первая половина дистального канальца является продолжением толстого сегмента восходящей части петли Генле и сохраняет ее свойства — проницаемость для воды и мочевины практически равна нулю, но здесь активно реабсорбируются ионы Na+ и СI- (5% от объема их фильтрации в клубочках) путем симпорта с помощью Na+/CI- котранспортера. Моча в ней становится еще более разбавленной (гипоосмотичной).

По этой причине первую половину дистального канальца, как и восходящую часть петли нефрона, относят к разводящему мочу сегменту.

Вторая половина дистального канальца, соединительный каналец, собирательные трубочки и протоки коркового вещества имеют схожее строение и схожие функциональные характеристики. Среди клеток их стенок выделяют два основных типа — главные и вставочные клетки. Главные клетки реабсорбируют ионы Na+ и воду и секретируют в просвет канальца ионы К+. Проницаемость главных клеток для воды (почти полностью) регулируется АДГ. Этот механизм предоставляет организму возможность управлять объемом выделенной мочи и ее осмолярностыо. Здесь начинается концентрирование вторичной мочи — от гипотоничной до изотоничной (плазме крови). Вставочные клетки реабсорбируют ионы К+, карбонаты и секретируют в просвет ионы Н+. Секреция протонов идет первично-активно за счет работы Н+ транспортирующих АТФаз против значительного градиента концентрации, превышающего 1000:1. Вставочные клетки играют ключевую роль в регуляции кислотно-основного равновесия в организме. Оба типа клеток практически непроницаемы для мочевины. Поэтому мочевина остается в моче в той же концентрации от начала толстой части восходящего колена петли Генле до собирательных протоков мозгового вещества почки.

Собирательные протоки мозгового вещества почки представляют собой отдел, в котором состав мочи формируется окончательно. Клетки этого отдела играют чрезвычайно важную роль в определении содержания воды и растворенных веществ в выделяемой (конечной) моче. Здесь реабсорбируется до 8% всей профильтровавшейся воды и только 1% ионов Na+ и СI-, и реабсорбция воды играет главную роль в концентрировании конечной мочи. В отличие от вышележащих отделов нефрона стенки собирательных протоков, располагающиеся в мозговом веществе почки, проницаемы для мочевины. Реабсорбция мочевины способствует поддержанию высокой осмолярности интерстиция глубоких слоев мозгового вещества почки и формированию концентрированной мочи. Проницаемость собирательных протоков для мочевины и воды регулируется АДГ, для ионов Na+ и СI- альдостероном. Клетки собирательных протоков способны реабсорбировать бикарбонаты и секретировать протоны, преодолевая высокий градиент концентрации.

Определение почечного клиренса для разных веществ позволяет исследовать интенсивность протекания всех трех процессов (фильтрации, реабсорбции и секреции), определяющих выделительную функцию почек. Почечный клиренс вещества — это объем плазмы крови (мл), который с помощью почек освобождается от вещества за единицу времени (мин). Клиренс описывается формулой

где Кв — клиренс вещества; ПКВ — концентрация вещества в плазме крови; Мв — концентрация вещества в моче; Ом — объем выделенной мочи.

Если вещество свободно фильтруется, но не реабсорбируется и не секретируется, тогда интенсивность его выделения с мочой (Мв • Ом) будет равна скорости фильтрации вещества в клубочках (СКФ • ПКв). Отсюда можно вычислить скорость клубочковой фильтрации путем определения клиренса вещества:

Таким веществом, удовлетворяющим перечисленным выше критериям, является инулин, клиренс которого составляет в среднем у мужчин 125 мл/мин, у женщин 110 мл/мин. Значит, количество плазмы крови, проходящей через сосуды почек и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл у мужчин и 110 мл у женщин. Таким образом, объем образования первичной мочи составляет у мужчин 180 л/сут (125 мл/мин • 60 мин • 24 ч), у женщин 150 л/сут (110 мл/мин • 60 мин • 24 ч).

Учитывая, что полисахарид инулин отсутствует в организме человека и его требуется вводить внутривенно, в клинике для определения СКФ чаще используется другое вещество — креатинин.

Определив клиренс других веществ и сравнив его с клиренсом инулина, можно оценить процессы реабсорбции и секреции этих веществ в почечных канальцах. Если клиренсы вещества и инулина совпадают, то данное вещество выделяется только с помощью фильтрации; если клиренс вещества больше, чем у инулина, то вещество дополнительно секретируется в просвет канальцев; если клиренс вещества меньше, чем у инулина, то оно, по-видимому, частично реабсорбируется. Зная интенсивность выделения вещества с мочой (Мв • Ом), можно рассчитать интенсивность процессов реабсорбции (реабсорбция = Фильтрация — Выделение = СКФ • ПКв — Мв • Ом) и секреции (Секреция = Выделение — Фильтрация = Мв • Ом — СКФ • ПК).

С помощью клиренса некоторых веществ можно оценивать величину почечного плазмотока и кровотока. Для этого используют вещества, которые высвобождаются в мочу путем фильтрации и секреции и при этом не реабсорбируются. Клиренс таких веществ теоретически будет равен общему плазма- току в почке. Подобных веществ практически нет, тем не менее от некоторых веществ кровь очищается при одном прохождении через ночки почти на 90%. Одним из таких естественных веществ является парааминогиппуровая кислота, клиренс которой составляет 585 мл/мин, что позволяет оценить величину почечного плазмотока в 650 мл/мин (585 : 0,9) с учетом коэффициента ее извлечения из крови 90%. При гематокрите, равном 45%, и почечном плазмотоке 650 мл/мин, кровоток в обеих почках составит 1182 мл/мин, т.е. 650 / (1-0,45).

Регуляция канальцевой реабсорбции и секреции осуществляется, главным образом, в дистальных отделах нефрона с помощью гуморальных механизмов, т.е. находится под контролем различных гормонов.

Проксимальная реабсорбция в отличие процессов переноса веществ в дистальных канальцах и собирательных трубочках не подвергается такому тщательному контролю со стороны организма, поэтому ее часто называют облигатной реабсорбцией. В настоящее время установлено, что интенсивность облигатной реабсорбции может изменяться под влиянием некоторых нервных и гуморальных воздействий. Так, возбуждение симпатической нервной системы ведет к увеличению реабсорбции ионов Na + , фосфатов, глюкозы, воды клетками эпителия проксимальных канальцев нефрона. Ангиотензин-Н также способен вызывать увеличение скорости проксимальной реабсорбции ионов Na + .

Интенсивность проксимальной реабсорбции зависит от величины клубочковой фильтрации и возрастает с увеличением скорости клубочковой фильтрации, что носит название клубочково-канальцевое равновесие. Механизмы сохранения этого равновесия до конца не изучены, однако известно, что они относятся к внутрипочечным регуляторным механизмам и их осуществление не требует дополнительных нервных и гуморальных влияний со стороны организма.

В дистальных канальцах и собирательных трубочках почки осуществляется, главным образом, реабсорбция воды и ионов, выраженность которой зависит от водно-электролитного баланса организма. Дистальная реабсорбция воды и ионов называется факультативной и контролируется антидиуретическим гормоном, альдостероном, Предсердным натрийуретическим гормоном.

Образование антидиуретического гормона (вазопрессина) в гипоталамусе и выброс его в кровь из гипофиза увеличивается при уменьшении содержания воды в организме (дегидратации), снижении артериального давления крови (гипотензии), а также при повышении осмотического давления крови (гиперосмии). Этот гормон действует на эпителий дистальных канальцев и собирательных трубочек почки и вызывает повышение его проницаемости для воды вследствие формирования в цитоплазме эпителиальных клеток особых белков (аквапоринов), которые встраиваются в мембраны и формируют каналы для тока воды. Под влиянием антидиуретичсского гормона происходит увеличение реабсорбции воды, снижение диуреза и повышение концентрации образующейся мочи. Таким образом, антидиуретический гормон способствует сохранению воды в организме.

При снижении выработки антидиуретического гормона (травма, опухоль гипоталамуса) образуется большое количество гипотоничной мочи (несахарный диабет); потеря жидкости с мочой может привести к обезвоживанию организма.

Альдостерон вырабатывается в клубочковой зоне коры надпочечников, действует на эпителиальные клетки дистальных отделов нефрона и собирательных трубочек, вызывает увеличение реабсорбции ионов Na+, воды и повышение секреции ионов К+ (или ионов Н+ при их избыточном содержании в организме). Альдостерон является частью ренин-ангиотензии-альдостероновой системы (функции которой рассмотрены ранее).

Предсердный натрийуретический гормон образуется миоцитами предсердий при их растяжении избыточным объемом крови, то есть при гиперволемии. Под влиянием этого гормона происходит увеличение клубочковой фильтрации и уменьшение реабсорбции ионов Na + и воды в дистальных отделах нефрона, вследствие чего происходит усиление процесса мочеобразования и выведение из организма избытка воды. Кроме того, этот гормон снижает продукцию ренина и альдостерона, что дополнительно тормозит дистальную реабсорбцию ионов Na + и воды.

источник