Меню Рубрики

Определение белка в моче всеми способами

В состав рабочего места по определению белка в моче входят следующие элементы:

  1. Пробирки химические, агглютинационные.
  2. Набор градуированных пипеток.
  3. Пипетки с узким оттянутым концом.
  4. Спиртовки или газовая горелка.
  5. Черная бумага.
  6. Ледяная уксусная кислота.
  7. Сульфосалициловая кислота.
  8. Концентрированная азотная кислота.
  9. Дистиллированная вода.

Все методики, применяющиеся для качественного определения белка в моче, основаны на свертывании белка. Свертывание белка проявляется выраженным в разной степени помутнением (от опалесценции до большой мутности) или выпадением хлопьев.

Качественное определение белка в моче может быть проведено одним из следующих способов:

  1. кипячением с 10% раствором уксусной кислоты;
  2. реакцией с 20% раствором сульфосалициловой кислоты;
  3. реакцией с 50% раствором азотной кислоты (проба Геллера);
  4. реакцией с 1% раствором азотной кислоты в насыщенном растворе поваренной соли (видоизмененная проба Геллера по Ларионовой).

Перед качественным определением белка в моче проводят следующую подготовительную работу:
1. Мутную мочу фильтруют через бумажный фильтр. Если получить прозрачный фильтрат не удается, производят повторное фильтрование через тот же фильтр или же смешивают мочу с небольшим количеством инфузорной земли или талька, после чего ее фильтруют.
2. Если моча имеет щелочную реакцию, ее подкисляют 10% раствором уксусной кислоты до слабокислой реакции под контролем лакмусовой или универсальной индикаторной бумажки.
3. При малом содержании солей (светло-желтая или бледно-желтая моча с малым удельным весом) к каждой
пробе добавляют несколько капель насыщенного раствора поваренной соли, так как недостаток солей обусловливает свертывание белка.
4. Степень помутнения наблюдают с помощью черного фона. В качестве фона используют черный картон или черную бумагу, применяемую в фотографии. Учет реакции на черном фоне позволяет выявить малейшую степень помутнения.

В отдельном штативе располагают пронумерованные пробирки. В них производят одну из описанных ниже реакций.

1. Проба кипячением с 10% раствором уксусной кислоты. Для постановки этой пробы необходим 10% раствор уксусной кислоты, который готовят следующим образом: 10 мл ледяной уксусной кислоты помещают в цилиндр и доливают дистиллированной водой до метки 100 мл.

Техника определения белка. В химическую пробирку помещают 10—12 мл отфильтрованной мочи слабокислой реакции. Затем верхнюю часть пробирки с мочой осторожно нагревают до кипения и добавляют в нее 8—10 капель 10% раствора уксусной кислоты. Пробирку с мочой рассматривают на черном фоне в проходящем свете. При наличии белка в моче появляется мутность разной степени (от опалесценции до большой мутности) или выпадают хлопья. Контролем служит нижняя часть пробирки, не подвергавшаяся нагреванию. Этой пробой обнаруживают количество белка, начиная с 0,015%о (%о — promille).

2. Реакция с 20% раствором сульфосалициловой кислоты. 20 % раствор сульфосалициловой кислоты готовят следующим образом: 20 г сульфосалициловой кислоты растворяют в 70-80 мл дистиллированной воды, переводят в цилиндр емкостью 100 мл и доливают дистиллированной водой до метки. Приготовленный реактив хранят в посуде из темного стекла.

Техника определения белка. В две пробирки одинакового диаметра помещают по 2—3 мл отфильтрованной мочи слабокислой реакции, в одну из пробирок к моче прибавляют 3—4 капли 20% раствора сульфосалициловой кислоты, другая пробирка служит контролем. При наличии белка в пробирке с реактивом появляется мутность или выпадают хлопья свернувшегося белка. В контрольной пробирке жидкость остается прозрачной. Сульфосалициловая кислота наряду с белком сыворотки осаждает альбумозы (пептиды), представляющие собой продукт распада белка. С целью уточнения причины помутнения мочи пробирку с мочой подогревают. Мутность, причиной образования которой оказались сывороточные белки, усиливается, мутность же, обусловленная присутствием альбумоз, исчезает. Эта проба имеет ту же чувствительность, что и предыдущая.

3. Реакция с 50 % раствором азотной кислоты (проба Геллера). 50% раствор азотной кислоты готовят следующим образом: к 50 мл азотной кислоты удельного веса 1,2-1,4 приливают 50 мл дистиллированной воды (разведение 1:1).

Техника определения белка. В узкую небольшую пробирку (тина агглютинационной) наливают 1 мл 50% азотной кислоты. В пипетку с узким оттянутым концом набирают 1 мл отфильтрованной исследуемой мочи, наслаивают на реактив и пробирку переводят в вертикальное положение. При наличии белка на границе жидкостей появляется белое кольцо. Время появления кольца, его свойства зависят от количества белка: если белка мало, то кольцо появляется не сразу, поэтому за его появлением следят в течение 2,5-3 минут. Минимальное количество белка, определяемое этим методом, 0,033°/оо. При меньшем содержании белка в моче кольцо не образуется. Учет результатов реакции производят на черном фоне в проходящем свете.

4. Реакция с 1% раствором азотной кислоты на насыщенном растворе поваренной соли — видоизмененная проба Геллера (по Ларионовой). Для проведения пробы используют 1 % раствор азотной кислоты, приготовленный на насыщенном растворе поваренной соли (реактив Ларионовой). 35 г поваренной соли растворяют в 100 мл дистиллированной поды, раствор фильтруют, к 1 мл концентрированной азотной кислоты удельного веса 1,2-1,4 приливают 99 мл приготовленного насыщенного раствора поваренной соли.

Техника определения белка такая же, как и при реакции с 50% раствором азотной кислоты (проба Геллера), но вместо 1 мл 50% раствора азотной кислоты в пробирку наливают 1 мл реактива Ларионовой и на него наслаивают 1 мл мочи. Появление белого кольца на границе жидкостей указывает на наличие белка в исследуемой моче. Проба по Ларионовой так же чувствительна, как и проба Геллера.

5. Колориметрическая (сухая) проба качественного определения белка. Колориметрическая (сухая) проба качественного определения белка в моче основана на воздействии, которое оказывает белок на цвет индикатора в буферном растворе.

Техника определения белка. Кусочек индикаторной бумаги, предназначенный для определения белка погружают в мочу на короткое время. Пробу считают положительной, если бумажка окрашивается в сине-зеленый цвет.

Количественное определение белка в моче основано на том, что при наслаивании мочи, содержащей белок, на 50% раствор азотной кислоты или реактив Ларионовой на границе двух жидкостей образуется белое кольцо, причем если четкое белое кольцо появляется к 3 минутам, то содержание белка равно 0,033%о или 33 мг в 1000 мл мочи. Появление кольца ранее 3 минут свидетельствует о большем содержании белка в моче.
При количественном определении белка в моче выполняют следующие правила:

  1. Количественное определение белка производят только в тех порциях мочи, где он был обнаружен качественно.
  2. Определение производят с тщательно отфильтрованной мочой.
  3. Точно соблюдают технику наслаивания исследуемой мочи на 50% раствор азотной кислоты или реактив Ларионовой в соотношении реактива с мочой (1:1).
  4. Время появления кольца определяют по секундомеру: при окончательном расчете количества белка учитывают время наслаивания мочи на азотную кислоту, которое равно 15 секундам.
  5. Разведение мочи производят исходя из свойства кольца. При этом каждое последующее разведение мочи готовят из предыдущего.
  6. Определение колец производят на черном фоне.

Наиболее распространены два метода количественно¬го определения белка в моче: метод Робертса — Стольникова — Брандберга и метод С. Л. Эрлиха и А. Я. Альтгаузена.

  1. Метод Робертса-Стольникова-Брандберга. По этому способу количество белка в моче определяют путем разведения ее до тех пор, пока при очередном наслаивании мочи на 50% раствор азотной кислоты или реактив Ларионовой кольцо появится точно к 3 минутам. Расчет количества белка производят, умножая 0,033%о на степень разведения мочи. Полученный результат выражает количество белка в миллиграммах на 1000 мл мочи, т. е. в promille (%о).
  2. Метод С. Л. Эрлиха и А. Я. Альтгаузена. В штатив помещают ряд агглютинационных пробирок, в которые предварительно наливают по 1 мл 50% раствора азотной кислоты или реактива Ларионовой. Исследуемую мочу берут отдельной чистой, сухой пипеткой с узким оттянутым концом и наслаивают на реактив, после чего включают секундомер. За временем появления кольца следят, располагая пробирку на черном фоне. При появлении кольца секундомер выключают.

При наслаивании мочи в зависимости от количества белка может появиться компактное, широкое или нитевидное кольцо. Компактное, широкое кольцо появляется тотчас же после наслаивания мочи на реактив. Нитевидное кольцо может появиться сразу, до истечения одной минуты, или в промежутке от одной до 4 минут.

При появлении нитевидного кольца в пределах от одной до 4 минут производить разведение мочи не нужно!
Для вычисления количества белка в этом случае достачно использовать предложенную авторами таблицу-план (табл. 1).

Пример 1. При наслаивании мочи на реактив нитевидное кольцо образовалось через 2 минуты. Если бы кольцо образовалось к 3 минутам, то количество белка было было бы равно 0,033%о.

В данном же случае кольцо образовалось раньше. Соответственная поправка, согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Это значит, что белка в данной порции мочи будет в 1+1/8 раза больше, чем 0,033°/оо, т. е. 0,033%о X(1+1/8) = 0,037°/оо.

При появлении нитевидного кольца до 1 минуты, т. е. через 40-60 секунд, производят одно разведение мочи в 1,5 раза (2 части мочи + 1 часть воды), а затем вновь наслаивают разведенную мочу на реактив и регистрируют появление кольца. При расчете результатов учитывают, что моча была разведена в 1,5 раза.

Пример 2. После наслаивания разведенной в 1,5 раза мочи нитевидное кольцо появилось к 2 минутам. Если бы кольцо появилось к 3 минутам, то белка было бы 0,033%. Соответственная поправка согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Белка в моче содержится 0,033%оX1,5X(1+1/8) = 0,056%о.

Если нитевидное кольцо появляется сразу, мочу разводят в 2 раза (1 часть мочи + 1 часть воды). Разведенную мочу вновь наслаивают на реактив и отмечают появление кольца по истечении 1 минуты.

Пример 3. При наслаивании разведенной в 2 раза мочи на реактив нитевидное кольцо появилось через 1 минуту 15 секунд. Тогда количество белка в исследуемой моче по аналогии с прежними расчетами будет равно
0,033%оХ2Х(1+3/8) = 0,091%.
В случае появления широкого кольца мочу разводят в 4 раза (1 часть мочи + 3 части воды).
При последующем наслаивании разведенной мочи нитевидное кольцо может образоваться как до, так и по истечении одной минуты. В таких случаях расчет количества белка производят по аналогии с предыдущими примерами, т. е. 0,033% о умножают на степень разведения и на соответственную поправку.

Пример 1. Кольцо после разведения мочи в 4 раза появилось сразу же. Мочу разводят в 2 раза. После наслаивания мочи, разведенной в 8 раз (4X2), нитевидное кольцо образовалось через 1,5 минуты. В таком случае количество белка равно 0,033%оХ8X1,25 = 0,33%о и т. д.
При появлении компактного кольца мочу разводят в 8 раз (1 часть мочи+ 7 частей воды). При последующем наслаивании разведенной мочи на реактив может образоваться либо компактное, либо широкое, либо нитевидное кольцо.

Пример 2. При наслаивании мочи на азотную кислоту тотчас же образовалось компактное кольцо. Мочу разводят в 8 раз (1 часть мочи + 7 частей воды) и вновь производят ее наслаивание. При этом опять получилось компактное кольцо. Тогда мочу разводят еще в 8 раз (для этого в цилиндр или в пробирку берут 1 часть разведенной мочи и прибавляют к ней 7 частей воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось сразу. Мочу разводят в 2 раза (1 часть мочи + 1 часть воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось к 2 минутам. Расчет количества белка данной порции мочи производят так: 0,033,%оX8X8X2X(1+1/8) = 4,8%о.

Помимо таблицы-плана, имеется таблица с рассчитанными цифрами белка (табл. 2). Если моча не разведена, то количество белка отыскивают в графе «Цельная неразведенная моча». При разведении мочи в целое число раз (8,4,2) используют табл. 1. При разведении мочи в 1,5 раза используют табл. 2.

В соответствующих графах таблицы наводят время появления кольца и степень разведения мочи.
Цифра, находящаяся в точке пересечения горизонтальной и вертикальной линий, проведенных от этих двух показателей, указывает на количество белка в исследуемой моче (%о).

Возможно, что при положительной качественной пробе на белок кольцо при наслаивании на 50% раствор азотной кислоты не образуется. Это значит, что в моче белка меньше 0,033%о. В таких случаях количество белка в бланке анализа обозначают термином «следы».

Если белок определен количественно, в бланке анализа мочи отмечают содержание белка в promille, например «белок — 0,66%о».

Помимо количественного определения белка в отдельной порции мочи, рассчитывают суточное его количество в граммах. С этой целью собирают суточную мочу, измеряют ее количество и определяют содержание белка в promille. Затем производят расчет. Например, суточное количество мочи равно 1800 мл, белок — 7°/оо. Значит, белка в суточном количестве мочи содержится: 1,8X7 = 12,6 г.

источник

Нормальные показатели: белок в норме в моче содержится в минимальных количествах, которые не обнаруживаются обычными качественными реакциями. Верхняя граница нормы белка в моче – 0,033 г/л. Если содержание белка выше этого значения, то качественные пробы на белок становятся положительными.

Клиническое значение определения:

Появление белка в моче называется протеинурия. Протеинурии могут быть ложными и почечными. Экстраренальные протеинурии могут быть при наличии примесей белкового происхождения из половых органов (вагинитах, уретритах и др.), количество белка при этом незначительно – до 0,01 г/л. Почечные протеинурии могут быть функциональными (при переохлаждении, физических нагрузках, лихорадке) и органическими — при гломерулонефрите, пиелонефрите, нефрите, нефрозах, почечной недостаточности. При почечных протеинуриях содержание белка может быть от 0,033 до 10 – 15 г/л, иногда выше.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка.

Обнаружение белка в моче с 20% сульфосалициловой кислотой.

Реактивы: 20% р-р сульфосалициловой кислоты. Оборудование: темный фон.

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В 2 пробирки одинакового диаметра наливают по 2 мл подготовленной мочи. 1 пробирка – контроль, 2 – опыт. В опытную пробирку добавляют 4 капли 20% сульфосалициловой кислоты.

3. Результат отмечают на темном фоне.

4. При наличии белка, моча в опытной пробирке мутнеет.

Качественное определение белка в моче тест – полосками.

Читайте также:  Почему моча желтого во время беременности

Для выявления протеинурий используют различные монотест – полоски: Альбуфан, Альбустикс, Биофан Е и политесты: Трискан, Нонафан и др.

Обнаружение белка в моче по методу Робертса – Стольникова.

Принцип метода: основан на том, что белок под действием неорганических кислот коагулирует (становится видимым). Степень помутнения зависит от количества белка (т.е. кольцевая проба Геллера). При концентрации белка в моче 0,033 г/л к концу 3 минуты после наслаивания мочи появляется тонкое нитевидное белое кольцо.

Реактивы: 50% р-р азотной кислоты или реактив Робертса (98 частей насыщенного раствора поваренной соли и 2 части концентрированной соляной кислоты) или реактив Ларионовой (98 частей насыщенного р-ра поваренной соли и 2 части концентрированной азотной кислоты).

1. Требования к моче: моча должна быть кислой (или слабокислой) рН, должна быть прозрачной, для этого мочу центрифугируют. Щелочную мочу подкисляют до слабокислой реакции среды, используя для контроля индикаторную бумагу.

2. В пробирку наливают 2 мл 50% р-ра азотной кислоты или один из реактивов, затем осторожно по стенке пробирки с помощью пипетки наслаивают такой же объем подготовленной мочи

3. Пробу оставляют на 3 минуты

4. Через 3 минуты отчитывают результат. Результат отмечают на темном фоне в проходящем свете. Если кольцо широкое, компактное, то мочу разводят дистиллированной водой и вновь наслаивают на реактив.

5. Мочу разводят до тех пор, пока через 3 минуты не образуется тонкое нитевидное кольцо.

6. Расчет содержания белка в моче производят по формуле:

С = 0,033г/л х степень разведения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8890 — | 7205 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Патологическая протеинурия является одним из наиболее важных и постоянных признаков заболеваний почек и мочевых путей. Определение концентрации белка в моче является обязательным и важным элементом исследования мочи. Выявление и количественная оценка протеинурии важна не только в диагностике многих первичных и вторичных заболеваний почек, оценка изменения выраженности протеинурии в динамике несет информацию о течении патологического процесса, об эффективности проводимого лечения. Обнаружение белка в моче даже в следовых количествах должно настораживать в отношении возможного заболевания почек или мочевых путей и требует повторного анализа. Особо следует отметить бессмысленность исследования мочи и, в частности, определения белка мочи без соблюдения всех правил ее сбора.

Все методы определения белка в моче можно разделить на:

  • Качественные,
  • Полуколичественные,
  • Количественные.

Все качественные пробы на белок в моче основаны на способности белков к денатурации под влиянием различных физических и химических факторов. При наличии белка в исследуемом образце мочи появляется либо помутнение, либо выпадение хлопьевидного осадка.

Условия определения белка в моче на основе реакции коагуляции:

  1. Моча должна иметь кислую реакцию. Мочу щелочной реакции подкисляют несколькими (2 — 3) каплями уксусной кислоты (5 – 10%).
  2. Моча должна быть прозрачной. Помутнение устраняется через бумажный фильтр. Если помутнение не исчезает, добавляют тальк или жженую магнезию (около 1 чайной ложки на 100 мл мочи), взбалтывают и фильтруют.
  3. Качественную пробу следует проводить в двух пробирках, одна из них – контрольная.
  4. Искать помутнение следует на черном фоне в проходящем свете.

К качественным методам определения белка в моче относятся:

Как показывают многочисленные исследования, ни один из большого числа известных методов качественного определения белка в моче не позволяет получать надежные и воспроизводимые результаты. Несмотря на это, в большинстве КДЛ в России эти методы широко используются в качестве скрининга – в моче с положительной качественной реакцией в дальнейшем проводят количественное определение белка. Из качественных реакций чаще используют пробу Геллера и пробу с сульфосалициловой кислотой, однако пробу с сульфосалициловой кислотой большей частью считают наиболее подходящей для выявления патологической протеинурии. Проба с кипячением в настоящее время практически не используется в связи с ее трудоемкостью и длительностью.

В основе метода Брандберга-Робертса-Стольникова лежит кольцевая проба Геллера, поэтому при данном методе наблюдаются те же ошибки, что и при пробе Геллера.

В настоящее время для определения белка в моче все чаще используются диагностические полоски. Для полуколичественного определения белка в моче на полоске в качестве индикатора чаще всего используется краситель бромфеноловый синий в цитратном буфере. О содержании белка в моче судят по интенсивности сине-зеленой окраски, развивающейся после контакта реакционной зоны с мочой. Результат оценивается визуально или с помощью анализаторов мочи. Несмотря на большую популярность и очевидные преимущества методов сухой химии (простота, скорость выполнения анализа) данные методы анализа мочи в целом и определения белка в частности не лишены серьезных недостатков. Одним из них, приводящих к искажению диагностической информации, является большая чувствительность индикатора бромфенолового синего к альбумину по сравнению с другими белками. В связи с этим, тест-полоски в основном приспособлены к обнаружению селективной гломерулярной протеинурии, когда практически весь белок мочи представлен альбумином. При прогрессировании изменений и переходе селективной гломерулярной протеинурии в неселективную (появление в моче глобулинов) результаты определения белка оказываются заниженными по сравнению с истинными значениями. Данный факт не дает возможности использовать данный метод определения белка в моче для оценки состояния почек (гломерулярного фильтра) в динамике. При тубулярной протеинурии результаты определения белка также оказываются заниженными. Определение белка с помощью диагностических полосок не является надежным индикатором низких уровней протеинурии (большинство выпускаемых в настоящее время диагностических полосок не обладают способностью улавливать белок в моче в концентрации ниже, чем 0,15 г/л). Отрицательные результаты определения белка на полосках не исключают присутствия в моче глобулинов, гемоглобина, уромукоида, белка Бенс-Джонса и других парапротеинов.

Хлопья слизи с высоким содержанием гликопротеидов (например, при воспалительных процессах в мочевых путях, пиурии, бактериурии) могут оседать на индикаторной зоне полоски и приводить к ложноположительным результатам. Ложноположительные результаты могут также быть связаны с высокой концентрацией мочевины. Плохое освещение и нарушение цветоощущения может быть причиной неточного результата.

В связи с этим, использование диагностических полосок следует ограничить скринирующими процедурами, а результаты, полученные с их помощью, следует рассматривать лишь как ориентировочные.

Корректное количественное определение белка в моче в ряде случаев оказывается непростой задачей. Трудности ее решения определяются следующим рядом факторов:

  • низким содержанием белка в моче здорового человека, часто находящимся на пороге чувствительности большинства известных методов;
  • присутствием в моче множества соединений, способных вмешиваться в ход химических реакций;
  • значительными колебаниями содержания и состава белков мочи при различных заболеваниях, затрудняющими выбор адекватного калибровочного материала.

В клинических лабораториях преимущественно применяются так называемые «рутинные» методы определения белка в моче, однако они далеко не всегда позволяют получать удовлетворительные результаты.

С точки зрения специалиста-аналитика, работающего в лаборатории, метод, предназначенный для количественного определения белка в моче, должен отвечать следующим требованиям:

  • обладать линейной зависимостью между поглощением образовавшегося в ходе химической реакции комплекса и содержанием белка в пробе в широком диапазоне концентраций, что позволит избежать дополнительных операций при подготовке пробы к исследованию;
  • должен быть прост, не требовать высокой квалификации исполнителя, выполняться при малом количестве операций;
  • обладать высокой чувствительностью, аналитической надежностью при использовании небольших объемов исследуемого материала;
  • быть устойчивым к воздействию различных факторов (колебаниям состава образца, присутствию лекарственных препаратов и др.);
  • обладать приемлемой стоимостью;
  • быть легко адаптируемым к автоанализаторам;
  • результат определения не должен зависеть от белкового состава исследуемого образца мочи.

Ни один из известных к настоящему времени методов количественного определения белка в моче не может в полной мере претендовать на роль «золотого стандарта».

Количественные методы определения белка в моче можно разделить на турбидиметрические и колориметрические.

К турбидиметрическим методам относятся:

  • определение белка с сульфосалициловой кислотой (ССК),
  • определение белка с трихлоруксусной кислотой (ТХУ),
  • определение белка с бензетоний хлоридом.

Турбидиметрические методы основаны на снижении растворимости белков мочи вследствие образования суспензии взвешенных частиц под воздействием преципитирующих агентов. О содержании белка в исследуемой пробе судят либо по интенсивности светорассеяния, определяемого числом светорассеивающих частиц (нефелометрический метод анализа), либо по ослаблению светового потока образовавшейся суспензией (турбидиметрический метод анализа).

Величина светорассеяния в преципитационных методах обнаружения белка в моче зависит от множества факторов: скорости смешивания реактивов, температуры реакционной смеси, значения pH среды, присутствия посторонних соединений, способов фотометрии. Тщательное соблюдение условий реакции способствует образованию стабильной суспензии с постоянным размером взвешенных частиц и получению относительно воспроизводимых результатов.

Некоторые лекарственные препараты влияют на результаты турбидиметрических методов определения белка в моче, приводя к так называемым «ложноположительным», либо «ложноотрицательным» результатам. К ним относятся некоторые антибиотики (бензилпенициллин, клоксациллин и др.), рентгеноконтрастирующие йодсодержащие вещества, сульфаниламидные препараты.

Турбидиметрические методы плохо поддаются стандартизации, часто приводят к получению ошибочных результатов, но, несмотря на это, в настоящее время они широко используются в лабораториях из-за невысокой стоимости и доступности реактивов. Наиболее широко в России используется метод определения белка с сульфосалициловой кислотой.

Наиболее чувствительными и точными являются колориметрические методы определения общего белка мочи, основанные на специфических цветных реакциях белков.

  1. биуретовая реакция,
  2. метод Лоури,
  3. методы, основанные на способности различных красителей образовывать комплексы с белками:
    • Понсо S (Ponceau S),
    • Кумасси бриллиантовый синий (Coomassie Brilliant Blue)
    • пирогаллоловый красный (Pyrogallol Red).

С точки зрения исполнителя, в повседневной работе лаборатории при большом потоке исследований биуретовый метод является неудобным из-за большого числа операций. В то же время, метод характеризуется высокой аналитической надежностью, позволяет определять белок в широком диапазоне концентраций и выявлять альбумин, глобулины и парапротеины со сравнимой чувствительностью, вследствие чего биуретовый метод рассматривают в качестве референтного и рекомендуют для сравнения других аналитических методов обнаружения белка в моче. Биуретовый метод определения белка в моче предпочтительно выполнять в лабораториях, обслуживающих нефрологические отделения, и использовать в тех случаях, когда результаты определения с помощью других методов представляются сомнительными, а также для определения величины суточной потери белка у нефрологических больных.

Метод Лоури, обладающий более высокой чувствительностью по сравнению с биуретовым методом, сочетает биуретовую реакцию и реакцию Фолина на аминокислоты тирозин и триптофан в составе белковой молекулы. Несмотря на высокую чувствительность, данный метод не всегда обеспечивает получение надежных результатов при определении содержания белка в моче. Причиной тому служит неспецифическое взаимодействие реактива Фолина с небелковыми компонентами мочи (чаще всего аминокислотами, мочевой кислотой, углеводами). Отделение этих и других компонентов мочи путем диализа или осаждения белков позволяет с успехом использовать данный метод для количественного определения белка в моче. Некоторые лекарственные препараты – салицилаты, хлорпромазин, тетрациклины способны оказывать влияние на данный метод и извращать результаты исследования.

Достаточная чувствительность, хорошая воспроизводимость и простота определения белка по связыванию красителей делают эти методы перспективными, однако высокая стоимость реактивов препятствует более широкому их использованию в лабораториях. В настоящее время в России все большее распространение получает метод с пирогаллоловым красным.

Проводя исследование уровня протеинурии, нужно иметь ввиду, что различные методы определения протеинурии имеют разную чувствительность и специфичность к многочисленным белкам мочи.

Исходя из эмпирических данных, рекомендуется определять белок двумя разными методами и рассчитывать истинное значение по одной из приведенных формул:

протеинурия = 0,4799 B + 0,5230 L;
протеинурия = 1,5484 B – 0,4825 S;
протеинурия = 0,2167 S + 0,7579 L;
протеинурия = 1,0748 P – 0,0986 B;
протеинурия = 1,0104 P – 0,0289 S;
протеинурия = 0,8959 P + 0,0845 L;

где:
B – результат измерения с Кумасси G-250;
L — результат измерения с реактивом Лоури;
P — результат измерения с молибдатом пирогаллола;
S — результат измерения с сульфосалициловой кислотой.

Учитывая выраженные колебания уровня протеинурии в различное время суток, а также зависимость концентрации белка в моче от диуреза, различное его содержание в отдельных порциях мочи, в настоящее время при патологии почек принято оценивать выраженность протеинурии по суточной потере белка с мочой, то есть определять так называемую суточную протеинурию. Она выражается в г/сут.

При невозможности сбора суточной мочи рекомендуется определять в разовой порции мочи концентрации белка и креатинина. Поскольку скорость выделения креатинина в течение дня достаточно постоянна и не зависит от изменения скорости мочеотделения, отношение концентрации белка к концентрации креатинина постоянно. Данное отношение хорошо коррелирует с суточной экскрецией белка и, следовательно, может использоваться для оценки выраженности протеинурии. В норме отношение белок/креатинин должно быть менее 0,2. Белок и креатинин измеряют в г/л. Важным достоинством метода оценки выраженности протеинурии по соотношению белок-креатинин является полное исключение ошибок, связанных с невозможностью или неполным сбором суточной мочи.

  • О. В. Новоселова, М. Б. Пятигорская, Ю. Е. Михайлов, «Клинические аспекты выявления и оценки протеинурии», Справочник заведующего КДЛ, № 1, январь 2007 г.
  • А. В. Козлов, «Протеинурия: методы ее выявления», лекция, Санкт-Петербург, СПбМАПО, 2000 г.
  • В. Л. Эмануэль, «Лабораторная диагностика заболеваний почек. Мочевой синдром», — Справочник заведующего КДЛ, № 12, декабрь 2006 г.
  • В.И. Пупкова, Л.М. Прасолова — Определение белка в моче и спинномозговой жидкости. Кольцово, 2007 г.
  • Справочник по клиническим лабораторным методам исследования. Под ред. Е. А. Кост. Москва, «Медицина», 1975 г.

Для количественного определения белка пригоден любой образец мочи. Большинство исследователей для выяснения величины суточной потери белка предпочитают определять содержание белка в моче, собранной за сутки.

Раздел: Анализ мочи

В настоящее время для определения белка в моче все чаще используются диагностические полоски. Для полуколичественного определения белка в моче на полоске в качестве индикатора чаще всего используется краситель бромфеноловый синий в цитратном буфере. О содержании белка в моче судят по интенсивности сине-зеленой окраски, развивающейся после контакта реакционной зоны с мочой.

Раздел: Анализ мочи

Все качественные пробы на белок в моче основаны на способности белков к денатурации под влиянием различных физических и химических факторов. При наличии белка в исследуемом образце мочи появляется либо помутнение, либо выпадение хлопьевидного осадка.

Читайте также:  Бак посев мочи на флору и чувствительность к антибиотикам где сдать

Раздел: Анализ мочи

Проба с 20% сульфосалициловой кислотой относится к качественным реакциям определения белка в моче. Так как она основана на реакции коагуляции, то исследуемая моча должна соответствовать определенным требованиям: быть прозрачной и иметь кислую реакцию.

Раздел: Анализ мочи

Кольцевая проба Геллера относится к качественным реакциям определения белка в моче. Так как она основана на реакции коагуляции, то исследуемая моча должна соответствовать определенным требованиям: быть прозрачной и иметь кислую реакцию.

Раздел: Анализ мочи

источник

У здорового человека незначительное количество белка всегда выделяется с мочой. Согласно современным воззрениям, выделение белка (экскреция) с мочой в количестве более 150 мг/сут является признаком болезненного состояния, которое называется протеинурия. Если в течение суток с мочой выводится более 3500 мг (3,5 г) белка, то это состояние называется нефротической протеинурией. Эти числа рекомендованы Американской академией семейных врачей (American Academy of Family Physicians).

Дискуссия про нормальное содержание белка в моче тесно связана с методом, которым его измеряют. Часто можно встретить информацию, что у здорового человека в моче белок не наблюдается вообще. Причиной этого является использование устаревших лабораторных методов измерения, чувствительность которых не позволяла установить малые концентрации белка. Вообще, у здорового человека количество белка, выводится с мочой колеблется в широких пределах. Появление в справочниках нормы содержания белка мочи в 0,033 г/л (в разовой порции) является следствием использования границ нормы в 20-50 мг/сут (после пересчета на суточное количество мочи в 1,5 литра). Эта граница является также приемлемой, хотя и заниженной, ведь 10-15% здоровых людей имеют большие значения экскреции, вплоть до 150 мг/сут.

С мочой выводятся различные виды белков. Около 20% белков мочи имеют небольшую массу, которая соответствует иммуноглобулинам, 40% – это альбумин, и еще 40% – протеины Тамма-Хорсфла. Кроме того, с мочой в ощутимых количествах выводится трансферрин. Количество других белков в моче меньше доли процента.

История изучения белка в моче

Этот анализ имеет удивительно долгую историю, которая начинается с замечания Гиппократа: «Если пена появляется на поверхности мочи, то это указывает на болезнь почек». Конечно, появление пены свидетельствует о высоком содержании белков, являющихся поверхностно-активными веществами.

Одну из первых попыток научно установить связь между свойствами мочи и болезнями почек осуществил Деккерз (Dekkers) из Нидерландов во второй половине XVII века. Он предложил теорию, согласно которой причиной всех болезней является потеря полезных веществ с мочой. По результатам исследования нескольких образцов мочи он сообщал, что «она имела сладкий вкус и после кипячения с уксусной кислотой появлялся осадок, а маслянистый слой всплывал на поверхность». Жаль, но выдающийся голландец не провёл аналогичных исследований мочи у других пациентов, и поэтому не заметил очевидную связь между протеинурией, гликозурией и состоянием истощения.

Детальное клиническое описание больных тяжелой протеинурией с образованием отеков предоставил Теодор Цвингер III из Базеля в начале XVIII века, впрочем он не проводил химических исследований мочи и не установил связи между состоянием почек и болезнью. Это сделал Доменико Котужно (Cotugno) из Неаполя почти 50 лет назад. Он первым описал альбуминурию в моче при нефротическом синдроме. Доктор Котужно выполнял тест с уксусной кислотой и нагреванием для выявления альбумина в моче, с целью установить эффективность лечения мочегонными средствами. Также он применял этот тест для поиска белка в жидкости отеков (транссудата) и в плазме крови.

Наконец, в начале XIX века связь между протеинурией, заболеванием почек и клиническими признаками нефротического синдрома стала общепризнанным. Джон Блэкал (John Blackall) первым систематически изучил альбуминурию. Он использовал работы Котужно и установил, что обычная моча не должна содержать белок. Блэкал также первым заметил липемический характер сыворотки крови у пациентов с сильною отечностью. Джон Босток (1773-1846) первый связал протеинурию с уменьшением количества белка в крови. Босток, химик и врач из Ливерпуля, количественно оценивал белок в мочу и сыворотке крови методами, которые опирались на изменения удельного веса, и отметил, что чем больше белка в моче, тем ниже его уровень в крови.

Современный взгляд на протеинурию впервые приведены в работе парижского врача Сабатье (Sabatier), опубликованной в 1834 году. Им предложен следующий механизм образования отеков: «. поскольку сыворотка крови обедняется альбумином, она становится более подвижной и легче проходит сквозь стенки артериальных капилляров».

Механизм попадания белка в мочу

Фильтрация плазмы крови с образованием мочи происходит в структуре почки, которая называется нефрон. В нефроне находится сосудистый клубочек или гломерула, представляющая собой извилистые капилляры, поверхность которых имеет многочисленные микроскопические отверстия, т.н. фенестры, через которые и происходит процесс фильтрации плазмы крови, то есть первый этап образования мочи. Диаметр и структура этих отверстий такова, что они пропускают только воду и некоторые соединения, которые должны выводиться из организма.

Далее находится трехслойная базальная мембрана, которую можно представить как сетку из тонких клеточных нитей (микрофибрилл), которая погружена в протеогликановый матрикс – полужидкое вещество, которое состоит из мукополисахаридов, присоединенных к белковым молекулам. Эта базальная мембрана вместе с сосудистым клубочком и большими эпителиальными клетками – подоцитами, формируют комплексный фильтрационный барьер, через который фильтруется кровь и образуется первичная моча. В норме он не пропускает клеток крови и большую часть белков с большой молекулярной массой.

Белки с молекулярной массой менее 20000 дальтон легко проходят через стенку клубочкового капилляра. Однако, следует заметить, что дальнейший путь первичной мочи проходит через проксимальную трубочку (длинный извилистый каналец), где белки частично возвращаются в кровоток (этот процесс называют реабсорбцией). Именно в канальцах полностью поглощаются и возвращаются в кровь глюкоза, вода, хлорид натрия, аминокислоты и витамины.

Виды протеинурии и болезни, при которых увеличивается количество белка в моче

В зависимости от происхождения различают пять типов протеинурии – клубочковая или гломерулярная, тубулярная (канальцевая), протеинурия перегрузки (overflow), постуральная (ортостатическая) и смешанная протеинурия. Из них только постуральная протеинурия может наблюдаться у здорового человека, остальные типы возникают при заболеваниях.

Как уже отмечалось, протеинурия – это увеличение общего количества белка в моче более нормы. В зависимости от того, насколько много белка выделяется с мочой, можно предположить определенные типы протеинурии:

Уровни белка в моче при различных типах протеинурии (при норме до 0,15 г / сут)

Количество белка в моче за сутки Тип протеинурии
0,15-2,0 г Легкая гломерулопатия, тубулярная протеинурия, протеинурия перегрузки
2,0-4,0 г Обычно гломерулярная протеинурия
Більше 4,0 г Всегда гломерулярная протеинурия

Самой распространенной причиной патологической протеинурии являются заболевания почек, которые поражают сосудистый клубочек или гломерулу. Поэтому такой вид протеинурии получил название клубочковой или гломерулярной. Повреждённые клубочки изменяют свою проницаемость для белков большой массы, что приводит к потере с мочой альбумина и иммуноглобулинов. Гломерулярная протеинурия может привести к значительным потерям белка; его экскреция с мочой в количествах превышающих 2 г в сутки указывает именно на эту форму болезни.

Причиной возникновения гломерулярной (клубочковой) протеинурии является гломерулонефрит. На самом деле, гломерулонефрит – это название, которое объединяет различные болезни, поражающие сосудистый клубочек почки. Причиной гломерулонефрита могут быть инфекции, вызванные микробами (преимущественно стрептококками) или вирусами. Значительное распространение имеет гломерулонефрит у больных сахарным диабетом (диабетическая нефропатия) и у гипертоников. Кроме того, наблюдают гломерулонефрит аутоиммунного происхождения.

Тубулярная протеинурия возникает вследствие болезней, которые мешают процессу реабсорбции (возврат в кровоток) компонентов первичной мочи, который происходит в проксимальных канальцах (тубулах). Этот вид протеинурии характеризуется умеренными потерями белка с мочой, преимущественно менее 2 г/сут, поскольку большая часть белковых молекул фильтруется до попадания в канальцы – в гломерулах (сосудистом клубочке).

К распространенным причинам тубулярной (канальцевой) протеинурии принадлежит гипертоническая нефропатия, вызванная нарушением кровоснабжения почек и различными поражениями тканей почки. Кроме того, широко применяемые препараты группы нестероидных противовоспалительных средств (НПВС) также способны вызвать это расстройство.

Причиной протеинурии перегрузки является синтез организмом значительных количеств низкомолекулярных белков. Их концентрация возрастает до такого уровня, что канальцы не способны эффективно возвращать их в кровоток (осуществлять реабсорбцию) и они поступают в мочу. Чаще всего к появлению протеинурии перегрузки приводит перепроизводство иммуноглобулинов, которое возникает при множественной миеломе (раковое заболевание, которое проявляется неконтролируемым делением плазматических клеток костного мозга).

Смешанный тип протеинурии возникает при гломерулонефрите. Его причиной является поступление значительных количеств альбумина (вследствие поражения гломерулы) в канальцы, где он уменьшает реабсорбцию низкомолекулярных белков, что характерно для канальцевой протеинурии. Таким образом, в случае смешанного типа протеинурии имеются признаки одновременно клубочковой и канальцевой патологии.

Постуральная (ортостатическая) протеинурия наблюдается у здоровых лиц. Под ортостатической протеинурией имеется в виду увеличение поступления белка с мочой при изменении положения тела, наблюдаемой преимущественно в подростковом возрасте. Есть сведения, что ортостатическая протеинурия сопровождается изменениями в тканях почек, следовательно ее доброкачественность и безвредность возможно будет отвергнута в результате дальнейших исследований.

Кроме условно доброкачественной ортостатической протеинурии диагностируется еще и функциональная протеинурия, которая не связана с изменениями в тканях почек. Среди ее причин: эмоциональный стресс, лихорадка, значительная физическая нагрузка, переохлаждение и сердечная недостаточность. После устранения исходной причины уровень белка в моче возвращается в норму.

Способы определения количества белка в моче

Для полуколичественного быстрого определения количества белка в моче в большинстве ситуаций используются тестовые полоски. При отсутствии белка цвет тестовой панели есть желтым. Белки, имеющиеся в моче, реагируют с системой буфер-краситель и меняют цвет панели в разные оттенки зеленого. Результаты оцениваются как негативные (белка менее 100 мг/л), следы (100-200 мг/л), 1 + (300 мг/л), 2+ (1000 мг/л), 3 (3000 мг/л) или 4+ (10000 мг/л). Этот способ преимущественно обнаруживает альбумин; он менее чувствителен к глобулинам.

Преимуществом использования тестовой полоски является простота и доступность, недостатком – небольшая точность. Причиной ложных положительных результатов определения белка в моче с применением тестовой полоски:

  • щелочная реакция мочи (рН более 7,5)
  • длительное пребывание ленты в моче;
  • измерения в концентрированной моче;
  • большое количество эритроцитов в моче (гематурия);
  • наличие гноя, спермы или влагалищных выделений в моче;
  • присутствие в моче пенициллина или сульфаниламидов.

Причиной ложных негативных результатов являются:

  • измерения в разведенной мочи
  • наличие в моче преимущественно низкомолекулярных белков (не альбумина).

Остальные методы выполняются в условиях лаборатории. Краткая справка о распространенных лабораторных способах определения содержания общего белка:

Тест с использованием сульфосалициловой кислоты позволяет качественно и надежно контролировать уровень протеинурии. Преимуществом этого теста является его чувствительность к широкому спектру белков, в том числе и низкомолекулярных. Этот метод требует лишь нескольких миллилитров свежей мочи. После реакции с сульфосалициловой кислотой образуется мутность, уровень которой измеряют аппаратно. Ложные результаты вызываются употреблением пенициллина, сульфаниламидов и рентгенографических красителей. Ложно-отрицательный результат возникает с щелочной мочой или разбавленным образцом.

Среди методов, используемых в автоматизированных анализаторах, встречаются колориметрические, турбидиметрические, электрофоретические и иммунологические. Все они имеют свои недостатки и преимущества. Из колориметрических методов биуретовая реакция (Biuret) имеет низкую чувствительность, метод Coomassie Brilliant Blue (кумасси бриллиантовый синий) имеет малый линейный диапазон. Активно применяют колориметрию с использованием красителя пирогалолового красного, который вместе с молибдатами формирует красный комплекс. В присутствии белка образуется сине-пурпурный комплекс, поглощение которого прямо пропорционально концентрации белка в образце.

Дополнительные исследования при увеличенном содержании белка в моче

Результаты измерения уровня белка в моче, полученные с использованием тестовой полоски или сульфосалициловой кислотой, плохо отражают реальное их количество. Пациенты с устойчивой протеинурией должны проводить количественный анализ белка в моче с помощью суточного образца.

Сбор суточного образца проводится так: первая утренняя порция сливается в унитаз, а все последующие, вместе с утренней мочой на следующий день, собираются в емкость соответствующего объема (не менее 2 литров). После добавления последней порции мочи (утром следующего для после начала собирания) вся собранная моча тщательно перемешивается, ее объем записывается, отливается до 50 мл и направляется в лабораторию на исследование, вместе с информацией про ее общее количество.

Для контроля качества собирания в образце мочи следует измерить уровень креатинина. Дело в том, что креатинин выделяется пропорционально мышечной массе, и его количество, выводимое с мочой, остается относительно постоянным. Молодежь и мужчины среднего возраста выделяют от 16 до 26 мг креатинина на килограмм веса в день, а женщины теряют от 12 до 24 мг/кг креатинина в сутки. У пациентов с истощением и пожилых экскреция (выделение) креатинина может быть меньше.

Альтернативой сбору суточного образца мочи, является определение соотношения количества белка в моче к креатинину мочи, которое устанавливается в обычном образце. Опытами доказана эффективность такого определения и его соответствие анализу суточной мочи при некоторых заболеваниях, включая сахарный диабет, преэклампсию и ревматические заболевания. Новые эксперименты показывают, что соотношение белка к креатинину в моче является более точным показателем протеинурии, чем анализ суточного образца. Это соотношение примерно такое же, как и количество граммов белка, выделяемого с мочой за сутки. Например, соотношение менее 0,2 равен 0,2 г белка в сутки и считается пределом нормы, а соотношение 3,5 эквивалентно экскреции 3,5 г белка на 24 часа и считается тяжелой протеинурией.

После выявления протеинурии следует провести микроскопическое исследование осадка мочи. Вместе они могут свидетельствовать о различных расстройства:

  • Жировые капли и тельца – нефротический синдром (содержание белка должно составлять более 3,5 г в суточной порции мочи)
  • Лейкоциты или слепок лейкоцитов с бактериями – инфекции мочевыводящих путей;
  • Слепок лейкоцитов без бактерий – поражение интерстициальной ткани почек;
  • Неизмененные эритроциты – повреждение мочевыводящих путей в нижней части;
  • Измененные эритроциты – поражение верхней части мочевыводящих путей
  • Слепленные эритроциты – поражение гломерул;
  • Воскообразные, эпителиальные и зернистые цилиндры – хронические болезни почек;
  • Эозинофилы – острый нефрит, вызванный интоксикацией (например медикаментами);
  • Гилиановые цилиндры – болезни почек отсутствуют, пациент обезвожен.
Читайте также:  Соли аскорбиновой кислоты в моче

Микроскопическая гематурия не приводит к увеличению уровня белка в моче, в отличие от макроскопической. Кроме того, наличие измененных эритроцитов может свидетельствовать о клеточный инсульт и, соответственно, заболевания клубочков (гломерул).

источник

Для дошкольников и учеников 1-11 классов

16 предметов ОРГВЗНОС 25 Р.

Тема: Определение белка в моче.

Цель: Изучить исследование химических свойств мочи.

Изучить количественные и качественные методы определения белка в моче;

Изучить основные принципы работы с тест-полосками на автоматических анализаторах.

Тип занятия: практическое (6ч)

Студент должен знать:

Качественные пробы для определения белка.

Метод Робертса – Стольникова.

Биуретовый метод определения белка (ТХУ).

Диагностическое значение исследования показателей.

Подготовить рабочее место к исследованию мочи.

Приготовить реактивы, посуду и оборудование к исследованию.

Определять химические свойства мочи (белок в моче качественными и количественными методами).

Работать с бланочной продукцией (оформление бланков анализа).

Правильно интерпретировать полученные результаты исследования.

Средства достижения поставленной цели:

1. Работа с конспектами, учебной и специальной литературой.

2. Подготовка к практическим занятиям с использованием методических рекомендаций преподавателя, выполнение и оформление практических работ.

3. Работа с информационными средствами обучения на электронных и бумажных носителях.

Оборудование учебного кабинета и рабочих мест кабинета:

посадочные места по количеству обучающихся;

рабочее место преподавателя;

специализированная мебель и оборудование.

Технические средства обучения:

компьютеры для оснащения рабочего места преподавателя и обучающихся;

технические устройства для аудиовизуального отображения информации;

аудиовизуальные средства обучения (презентация, учебный видеосюжет).

Результатом освоения урока является:

Формирование практических профессиональных умений и первоначального практического опыта, в том числе профессиональными ( ПК ) и общими ( ОК ) компетенциями:

ПК 1.1 . Готовить рабочее место для проведения лабораторных общеклинических исследований.

ПК 1.2 . Проводить лабораторные общеклинические исследования биологических материалов.

ПК 1.3 . Регистрировать результаты проведенных исследований.

ПК 1.4. Проводить утилизацию отработанного материала, дезинфекцию и стерилизацию использованной лабораторной посуды, инструментария, средств защиты.

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2 . Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, пациентами.

ОК 9 . Ориентироваться в условиях смены технологий в профессиональной деятельности.

ОК 13. Организовывать рабочее место с соблюдением требований охраны труда, производственной санитарии, инфекционной и противопожарной безопасности.

I модуль. Теоретическая часть с элементами самостоятельной работы

Задание №1. Изучите и законспектируйте учебный материал в рабочие тетради.

М оча здорового человека обычно содержит менее 0,002 г/л и редко до 0,012 г/л белка и как правило такое содержание белка в моче называют «в виде следов» и общепринятыми (унифицированными) химическими методами в моче здорового человека не определяется.

Содержание белка в порциях мочи, собранной в разное время суток, может колебаться в значительных пределах.

П оявление белка в моче называется протеинурия.

В зависимости от суточной потери белка различают следующие степени протеинурии: умеренная — до 1 г; средняя — от 1 до 3 г; выраженная — более 3 г.

Существует два основных вида протеинурии:

Протеинурии, обусловленные заболеваниями мочевыводящих путей;

протеинурии, при поражениях (заболеваниях) почек.

Протеинурии, связанные с воспалительными процессами мочевыводящих путей, сопровождаются появлением в моче значительного количества лейкоцитов или эритроцитов, что, однако, не позволяет исключить одновременного попадания белка в мочу из почечной паренхимы; содержание белка редко превышает 1 г/л.

Почечная протеинурия в большинстве случаев связана с повышенной проницаемостью гломерул и делится на 2 группы :

К физиологической протеинурии относят случаи временного появления белка в моче, не связанные с заболеваниями:

после приема большого количества пищи, богатой не денатурированными белками (сырое мясо, сырые яйца);

при интенсивной мышечной работе (продолжительные походы, спортивные соревнования);

при приеме холодной ванны или душа;

при сильных эмоциональных переживаниях;

при эпилептических приступах.

Различают ортостатическую, или юношескую, протеинурию, встречающуюся у детей и подростков и проходящую с возрастом. В дифференциально диагностическом отношении имеет практическое значение то, что ортостатическая альбуминурия обнаруживается нередко в период выздоровления после острого гломерулонефрита.

Патологическая почечная протеинурия может быть следствием органических заболеваний почек и других органов и систем: острые гломерулонефриты; хронические гломерулонефриты; острые пиелонефриты; хронические пиелонефриты; нефропатии беременных; различные заболевания, сопровождающиеся лихорадкой; выраженная хроническая сердечная недостаточность; а милоидоз почек; липоидный нефроз; туберкулез почки; геморрагические лихорадки; геморрагический васкулит; выраженная анемия; гипертоническая болезнь и др.

Задание №2. Перепишите и зарисуйте схемы лабораторных методов определения белка в моче.

Лабораторные методы определения белка в моче

Существуют качественные и количественные методы определения белка в моче, они основаны на коагуляции белка в объеме мочи или на границе сред (моча и кислота); при этом измерение степени коагуляции делает пробу количественной.

проба с 20% сульфосалициловой кислотой (унифицированная);

кольцевая проба Геллера (в настоящее время не используется);

обнаружение белка с помощью индикаторной бумаги (полосок) и тест-полосок.

унифицированный метод Брандберга-Робертса-Стольникова;

с 3% сульфосалициловой кислотой.

Качественные методы определения белка в моче

Задание №3. Определение белка в моче с помощью у нифицированной пробы с 20% сульфосалициловой кислотой

Принцип метода: основан на коагуляции белка в объеме мочи или на границе сред (моча и кислота)

Посуда, оборудование и реактивы:

20% сульфосалициловой кислоты (2-гидрокси-5-сульфобензойная кислота C 7 H 5 0 6 S ).

3мл профильтрованной мочи

В две пробирки вносят по 3 мл профильтрованной мочи, в одну из них (опытную) прибавляют 6—8 капель сульфосалициловой кислоты. На темном фоне сравнивают обе пробирки.

Интерпретация полученных результатов:

Помутнение в опытной пробирке свидетельствует о наличии в моче белка — проба положительна.

Примечание. Мочу со щелочной реакцией перед исследованием подкисляют добавлением нескольких капель 10% раствора уксусной кислоты

Задание №4. Определение белка с помощью кольцевой пробы Геллера

Принцип метода: В основу положена кольцевая проба, заключающаяся в том, что при добавлении к моче азотной кислоты на границе сред (кислота – моча) при наличии белка происходит его коагуляция и появляется белое кольцо.

Посуда, оборудование и реактивы:

— реактивы: 30% раствор азотной кислоты ( HNO 3) ( d = 1,2) или реактив Ларионовой : 20— 30 г хлорида натрия ( NaCl ) растворяют при нагревании в 100 мл дистиллированной воды, остужают, фильтруют; к 99 мл фильтрата приливают 1 мл концентрированной HNO 3.

В пробирку наливают 1 — 2 мл 30% раствора HNO 3 или реактива Ларионовой и осторожно по стенке наслаивают столько же профильтрованной мочи.

Интерпретация полученных результатов:

Появление на границе двух жидкостей между 2-й и 3-й мин тонкого белого кольца указывает на наличие белка в моче.

Зарисуйте схему определения белка

Количественное определение белка

Принцип метода: В основу положена кольцевая проба Геллера, заключающаяся в том, что при добавлении к моче азотной кислоты на границе сред (кислота — моча) при наличии белка происходит его коагуляция и появляется белое кольцо.

Посуда, оборудование и реактивы:

Биологическая жидкость (моча);

В пробирку наливают 1 — 2 мл 30% раствора HNO 3 или реактива Ларионовой и осторожно по стенке наслаивают столько же профильтрованной мочи.

Интерпретация полученных результатов:

Появление на границе двух жидкостей между 2-й и 3-й мин
тонкого белого кольца указывает на наличие белка в концентрации примерно 0,033 г/л. При появлении кольца раньше 2-х мин после наслаивания мочу следует развести дистиллированной водой и провести повторное исследование с разведенной мочой. Степень разведения мочи подбирают в зависимости от вида кольца, его ширины, компактности и времени появления.

При нитевидном кольце, появившемся ранее 2 мин, мочу разводят в 2 раза, при широком — в 4 раза, при компактном — в 8 раз и т.д. Концентрацию белка вычисляют, умножив степень разведения на 0,033 г/л.

Белое кольцо может образовываться при наличии большого количества уратов; в отличие от белкового оно появляется немного выше границы двух жидкостей и растворяется при легком нагревании.

Задание №6. Определение количества белка в моче с 3 % сульфосалициловой кислотой

Принцип метода: Концентрация белка в моче пропорциональна помутнению, появляющемуся при его коагуляции сульфосалициловой кислотой

Посуда, оборудование и реактивы:

0,9% раствор хлорида натрия;

1% стандартный раствор альбумина — 1 г лиофилизированного альбумина (из человеческой или бычьей сыворотки) растворяют в небольшом количестве 0,9% раствора NaCl в колбе емкостью 100 мл, а затем доводят до метки тем же растворителем. Реактив стабилизируют прибавлением 1 мл 5% раствора азида натрия ( NaN 3). При хранении в холодильнике реактив стабилен в течение 2 месяцев.

В пробирку вносят 1,25 мл профильтрованной мочи, добавляют 3,75 мл 3% раствора сульфосалициловой кислоты, перемешивают. Через 5 мин пробу фотометрируют на ФЭКе при длине волны 590—650 нм (оранжевый или красный светофильтр) против контроля в кювете с длиной оптического пути 5 мм. Контролем служит проба, в которой к 1,25 мл мочи добавлено 3,75 мл 0,9% раствора хлорид е натрия. Концентрацию белка рассчитывают по калибровочному графику, для построение которого готовят разведения стандартного раствора альбумина (см. таблицу) . Из каждого полученного разведенного раствора берут по 1,25 мл и обрабатывают, как опытные пробы.

Приготовление разведений для построения калибровочного графика

0,9% раствор хлорида натрия, мл

Прямолинейная зависимость величины экстинкции и концентрации белка сохраняется до 1 г/л. При более высоких концентрациях белка пробу следует разводить и учитывать разведение при расчете.

При наличии в моче веществ, содержащих йод, могут быть получены ложноположительные результаты. Поэтому тест нельзя использовать у больных, принимающих препараты йода или прошедших исследование с применением йодсодержащих рентгеноконтрастных соединений. Ложноположительные J реакции при проведении исследования могут быть вызваны приемом сульфаниламидных лекарственных средств, больших доз пенициллина и при высоких концентрациях в моче мочевой кислоты.

Зарисуйте схему определения белка

Задание №7. Обнаружение в моче белка Бенс-Джонса

Принцип метода: основан на реакции термопреципитации

Посуда, оборудование и реактивы:

Реактив: 2М ацетатный буфер рН 4,9.

4 мл профильтрованной мочи смешивают с 1 мл буферного раствора и нагревают 15 мин на водяной бане при температуре 56°С.

Интерпретация полученных результатов:

При наличии в моче белка Бенс-Джонса уже в первые 2 мин появляется выраженный осадок.

При концентрации белка менее 3 г/л проба может быть отрицательна, что встречается довольно редко, так как обычно концентрация белка Бенс-Джонса в моче весьма значительна.

Наиболее достоверно выявление белка Бенс-Джонса осаждением при температуре 40—60°С. Однако в слишком кислой (рН менее 3,0) или слишком щелочной (рН более 6,5) моче, при низкой относительной плотности мочи и низкой концентрации бежа Бенс-Джонса (менее 3 г/л) осаждение может не происходить.

Зарисуйте схему определения белка

II модуль. Самостоятельная работа с исследовательским этапом

Задание №1. Изучите и законспектируйте приложение №1 « Обнаружение белка с помощью диагностических тест-полосок»

— Получите образцы биологической жидкости (мочи) у преподавателя, пронумеруйте образцы;

— Проведите исследование мочи с помощью диагностических тест-полосок;

— Оцените полученный результат (норма, патология). Предположите причину возникновения белка в моче.

— Результат запишите в бланки анализа, сдайте их преподавателю.

« Обнаружение белка с помощью диагностических тест-полосок»

Принцип. Белок изменяет цвет индикатора, нанесенного на полоску. Индикаторы упакованы в комплекте по 100 полосок, которые хранятся в плотно закрытом пенале, прохладном и сухом месте.

Правила работы с диагностическими тест-полосками

При работе с диагностическими тест-полосками необходимо соблюдать следущие правила:

— держать диагностические тест-полоски в плотно закрытых упаковках-пеналах;

— хранить пеналы в темном, сухом, прохладном месте при температуре, не превышающей 30ºС, но не в холодильнике;

— не подвергать полоски действию влаги и прямого солнечного света, высокой температуры и летучих химических веществ;

— доставать только строго необходимое количество полосок, после чего немедленно закрывать пенал;

— не дотрагиваться пальцами до диагностических зон.

1. Для исследования используйте утреннюю мочу, собранную в одноразовый пластиковый контейнер для мочи (или чистую сухую посуду). Перемешайте доставленную мочу, но не центрифугируйте.

При использовании нестандартной приспособленной тары остатки моющих средств в посуде для сбора мочи являются причиной ложных результатов.

2. Из пенала возьмите тест-полоску.

3. Сразу же закройте пенал фабричной крышкой, полоску охраняйте от влаги.

4. Индикаторные бумажные зоны полоски опустите на 2-3 секунды в исследуемую мочу и сразу же выньте.

5. Для удаления избытка влаги с диагностических зон полоски проведите ее длинным краем по краю контейнера (или иной емкости, в которой доставлена моча) или приложите этот край полоски к фильтровальной бумаге.

Смывать с диагностических зон полоски лишнюю мочу нельзя.

6. По истечении времени, указанного на этикетке пенала или в инструкции к каждому тесту, сравните цвет соответствующей диагностической зоны с цветной шкалой на этикетке пенала с полосками (эталоном). Порядок проведения теста представлен рисунками 1-7.

7. Реакцию оценивают как положительную или отрицательную. Или выражают в цифровом обозначении в г/л. (см. рисунок №8).

Рис. №8 Оценка результатов исследования

III Модуль. Контрольные вопросы и задания

Ответьте на поставленные вопросы, используя рабочую тетрадь

Расскажите метод определения белка в моче 50% азотной кислотой.

Расскажите метод определения белка в моче 20 % ССК.

Расскажите методику определения белка в моче методом Робетса – Стольникова – Бранберга.

Расскажите методику определения белка в моче диагностическими тест- полосками.

Какие существуют правила работы с диагностическими тест-полосками.

Назовите основные критерии правильно проведенного теста.

Расскажите методику обнаружения в моче белка Бенс-Джонса.

Диагностическое значение определения химических свойств мочи.

Клиническая оценка химических свойств мочи.

Запишите в рабочей тетради термины и дайте им обозначение , используя изученный материал

Знать теоретический и практический материал.

Отвечать на контрольные вопросы.

Литература для самостоятельной подготовки: И.И.Миронова, Л.А.Романова, В.В.Долгов. Общеклинические исследования: моча, кал, ликвор, эякулят.- М.-Тверь: ООО «Издательство «Триада», 2005

источник